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A B S T R A C T

Dependency management is a key part of the software development lifecycle. Choices
made when managing dependencies impact both the efficiency of software develop-
ment and final software quality. Today’s package managers automate much of the
dependency management work, but key challenges remain generally unsolved, such as
aiding developers with dependency repair, optimizing over dependency solutions, and
improving transparency of popular package managers’ semantics.

I claim that software dependency specifications can be generalized and formalized
across diverse solving algorithms and package ecosystems, and that doing so enables
us to attack such challenges. To support this claim, we show three contributions: a) an
empirical analysis of dependency use in the NPM ecosystem, which motivates questions
regarding the design of NPM, b) an executable formal semantics of dependency solving
(PacSolve) and an optimizing NPM solver (MaxNPM), and c) a system for efficient
automated repair of Python dependencies, modeled using PacSolve.
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1
I N T R O D U C T I O N

Nearly all software written today relies on dependencies, such as depending on critical
utility libraries (e.g. openssl), or architecting an entire application around a framework
(e.g. react). These dependencies in turn rely on their own set of dependencies, forming
a complex dependency graph.

Installing and managing dependencies (and transitive dependencies) manually is
impractical for any large project. Versions of dependencies must be chosen carefully
such that they are compatible, and updates must be likewise computed properly to
ensure consistency. Additionally, every dependency affects the quality of the compiled
software in multiple dimensions, including code size and security, with different
versions of dependencies having different effects.

To automate dealing with these complexities, various communities have developed
package managers to assist with dependency management, both at the system level (e.g.
APT, Spack [35]) and at the language level (NPM, PIP, etc.). These package managers
typically consist of several components:

1. a large ecosystem of open-source packages (over 500K in PyPI [31] and 3.4M in
NPM [23] at the time of writing),

2. a syntax for writing version numbers of packages, and allowing multiple versions
of a package to be published to the ecosystem,

3. a syntax for writing dependency specifications,

4. and a command-line tool, a dependency solver, which takes as input dependency
specifications, computes a dependency solution, and performs the associated
installation actions.

Modern package managers offer programmers several benefits that are worth remark-
ing on. First, dependency specification syntaxes allow programmers to specify their
dependencies in a declarative, typically constraint-based style, such as “any version
of react greater than 1.1.0”. Programmers are freed from both the effort of manually
updating dependencies in response to e.g. security patches, as well as the pain of
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2 introduction

writing imperative build scripts to properly compile or install dependencies. Second,
among the large space of potential dependency solutions induced by the dependency
constraints, most package managers try to find a solution that is “good” in some sense,
such as trying to select newer versions of dependencies (Chapters 3 to 5 explore this
empirically and formally).

However, there are also multiple shortcomings with many of these systems, which
in this dissertation I show can be addressed by developing a thorough formalization
of dependency solving, and using it to build better dependency management tools.
Below I outline some of the current problems faced by programmers when managing
dependencies.

arbitrary choices in the design space First, the precise semantics of the
dependency specification languages are typically not formally defined but rather are
considered to be defined by the implementation of the package manager. While the
dependency specification languages are mostly self-evident in meaning, there are
nevertheless various surprising behaviors or “footguns” [53] which indicate that a
formal treatment of dependency specification would offer explanatory value. Similarly,
the precise behavior and guarantees offered by the solving algorithm are likewise not
always well understood. Programmers may already struggle to understand all the
quirks of a single package manager, and this is compounded by subtle differences
between package managers. Moreover, these package managers make trade-offs in the
design space of dependency management, as some goals (choosing newer versions of
packages) may be in tension with other goals (reducing the number of dependency
conflicts), and unsurprisingly, different package managers bake different trade-offs into
their design.

lack of solution exploration Second, even though package managers expose
a declarative-style language for specifying dependencies, they do very little to exploit
this structure. Dependency constraints typically define a large space of admissible
dependency solutions, but most package managers do not explore this space thoroughly.
Instead, they typically use simple heuristics to directly choose an appropriate solution,
and only explore more of the space when needed to backtrack due to conflicts1.
This leaves on the table opportunities for finding even better dependency solutions.
Some package managers, such as Spack [35] and OPIUM [101], solve dependencies

1 NPM does not even do backtracking on conflicts.
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by transforming dependency problems into some type of constraint programming
problem, and solving that using a solver. This separation allows for easier expression
of cost functions over the space, which both my work and prior work exploit.

defects in dependency specifications Third, all package managers assume
the validity of the human-provided dependency constraints and version numbers.
These annotations are not checked against the underlying code, and thus can easily be
published to the public package ecosystems while incorrect. Specifying dependency
constraints which are both flexible and correct is inherently intractable, as programmers
of dependencies can always publish updates which they claim to be compatible updates
but actually are breaking changes. In practice, specifying dependency constraints is
a difficult balance between writing constraints that are too narrow and too broad. A
constraint that is too narrow (admits a strict subset of the versions that work with the
program) does not cause bugs, but restricts the admitted solution space potentially
causing solving failures or rejecting higher-quality solutions. On the other hand, a
constraint that is too broad (admits versions that do not work with the program) is a
serious bug, as it means that (depending on the exact solving context) the program
may be linked with a dependency version which causes bugs or total program failure.
Programmers of published packages have a responsibility of making their constraints
neither too broad nor too narrow, a task which is made more difficult by the fact that
they do not have complete information, since more versions of dependencies will be
uploaded in the future after the programmer has specified the dependency constraint.

A partial solution to this problem is semantic versioning, or semver, which acts as
an informal contract between package authors and package consumers, in which
package authors promise to publish breaking changes as increments to the major
version number, such as 1.2.5 to 2.0.0. If package authors follow this convention
perfectly, then consumers may feel comfortable writing dependency constraints which
include all versions of the form 1.*.*. As with dependency constraints, adherence to
semver conventions is never validated. Defects in dependency specifications or version
specifications lead to broken dependencies, necessitating the need for dependency repair
techniques.
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1.1 thesis

Package managers have become essential tools for programmers across many ecosys-
tems. While they have automated much of the grunt work of repetitive dependency
management tasks such as solving constraints, downloading, building, and linking
dependencies, key problems remain in the space of dependency management, including
searching for optimal dependency solutions and repairing dependency solutions. Since
package managers are used so widely in practice, we now have massive datasets of
detailed dependency constraints for us to leverage and evaluate on.

In this dissertation, I present a collection of work that addresses many of these loose
threads of dependency management. I claim that:

Software dependency specification and management can be formalized, and
doing so provides a basis for building tools offering improved optimization
and repair of dependencies.

Concretely, four contributions form the support for this thesis:

1. An empirical analysis of how programmers tend to use dependencies in practice,
as well as how dependency solving behaves at scale.

This empirical analysis is discussed in Chapter 3, which is based on the MSR 2023
paper “A Large Scale Analysis of Semantic Versioning in NPM” [80].

2. A formal semantics of dependency solving (PacSolve).

This formal semantics is presented in Chapter 4, and is an extended version of the
semantics developed in the ICSE 2023 paper “Flexible and Optimal Dependency
Management via Max-SMT” [84].

3. A drop-in optimizing solver replacement for NPM (MaxNPM) built using Pac-
Solve.

The MaxNPM tool and empirical evalutions are presented in Chapter 5, which is
based on the above-mentioned ICSE 2023 paper.

4. A system for automated repair of Python dependencies (Repyro), modeled using
PacSolve.

This work is discussed in Chapter 6.

The first two contributions form a basis for understanding dependency management,
and the latter two build on that understanding to implement novel tools.
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B A C K G R O U N D

Dependency management and package managers are currently bifurcated between
“system package managers” (e.g. APT [42] for Debian Linux), which install software
onto a local machine, and “programming language package managers” (e.g. NPM for
JavaScript) which install libraries written in and for that specific language. While the
technical contents of my thesis have primarily been applied to programming language
package managers, they are equally applicable to system package managers, and
moreover serve to highlight that system and programming language package managers
are not very different in essence. We start the story of package management by looking
at the distinct but related topic of module systems.

2.1 module systems

Since the early days of computing, mechanisms for program abstraction (broadly
defined) have been a crucial object of study in programming languages research.
Various such mechanisms have been developed, including the concepts of abstract
data types [59], classes [76], and most relevantly to this thesis, modules, introduced by
Wirth in Modula [105], and expanded upon by MacQueen and others surrounding the
development of ML [43, 44, 56, 62, 63, 69].

While module systems across languages vary substantially, at their simplest they
provide programmers three key features: a) writing definitions (classes, functions, types,
etc.) scoped inside a module, b) exporting definitions from a module, making them
accessibly by other modules, and c) importing definitions from some other module
into the current module, making those external definitions locally accessible. These
essential features of module systems allow programmers to decompose their software
into mostly-independent modules, thereby promoting better software design and
enabling programmers to comprehend modules in isolation from each other.

Research on the design of modules systems has focused on both design quality
questions (expressiveness, ease-of-use, support for separate compilation, etc.) as well as
formal questions of the soundness of type checking across modules. However, in this

5



6 background

pre-Internet time when researchers were first developing these module systems, it was
difficult to transmit and share code with other collaborators, let alone strangers.

2.2 package distribution systems

Some of the earliest systems for sharing code across the Internet were born from users
of specific programming languages and their need to collaborate and more easily reuse
the work of others in the community. CTAN (the Comprehensive TEXArchive Network)
[40], first discussed in 1991 and implemented in 1992, was the first centralized system
for TeX users to be able to find and download packages (i.e. TEXsource code) submitted
by other users, as well as submit packages of their own. Other archive networks such as
CPAN (Perl) [98], CRAN (R) [99] and others soon followed. Concurrently, early Linux
distributions realized the need for centralized software repositories paired with tooling
(such as dpkg) to enable users to install software from these repositories which would
be packaged in a well-defined and automatically installable format.

Early versions of these systems were solving the problem of package distribution,
but did not (initially) think about dependencies. To install a package, a user would
need to be aware of what its dependencies were (e.g. from documentation), use the
package installation tools to install those dependencies, and then install the primary
package they wanted. Updating packages to newer versions would similarly require
updating dependencies first, and then updating the primary package. Another key
difference between these package distribution systems and other modern package
ecosystems (including PyPI, Crates, and NPM) is that they were (and still are) highly
curated, requiring package authors to fill out detailed forms to register packages
submissions which are subjected to manual review. Some challenges with dependency
management, such as being able to trust that dependency updates really are non-
breaking, are exacerbated in ecosystems at the scale of NPM for which manual review
is not conducted.

2.3 dependency specifications and package managers

To enable significantly easier package installation, designers of both these operating
system package managers (pms, rpm, apt, etc.) and programming langauge package
managers (CPAN, Maven, etc.) designed formats for package authors to specify package
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dependencies in a machine-readable format, which the package manager would read
at install time and then use to install the required (transitive) dependencies.

While different package managers have wildly varying notions of dependency speci-
fications and automated solving algorithms, these concepts, paired with centralized
package repositories, are the essential components of what we would now call a “pack-
age manager”. Chapter 4 will present a formalization of these components in greater
detail, so for the moment we will informally assume that package authors write “depen-
dency specifications” by specifying the name of the dependent package, and possibly
some versioning information.

Package managers are used in a separate installation phase before the installed
packages are loaded1, and the package manager implementation is generally separate
from the system which loads the packages. For example, multiple package managers
exist for JavaScript (NPM, Yarn, etc.), all of which install packages on disk in a standard
format (the node_modules/ directory) which is then loaded by the module system of the
Node runtime. Package managers thus act as a bridge between the package repository
(e.g. npmjs.com) and the module system of the programming language in question. The
package manager receives input from the user, looks up dependency data from the
package repository, computes some sort of dependency solution, and finally translates
that solution into a format appropriate for the language’s module system. We will
pursue a deeper discussion of modeling this formally in Chapter 4.

2.4 dependency management

Dependency management involves more than just one-off solving of dependencies.
Programmers must determine policies for how to effectively evolve their dependencies
over time, while balancing factors such as prioritizing up-to-date depdencies and
minimizing risks that come with that, such as accidental breaking changes, malicious
updates, code size bloat, handling dependency conflicts, and more. As open source
package repositories grow in scale, the maintenance, updating, and distribution of
packages is difficult and time-consuming for programmers to maintain. Of particular
concern is the technical lag [15, 25, 39, 112, 114] that packages experience between when
a new update is available for a dependency and when that update is applied.

1 “loaded” may mean executed (in the context of a system package manager providing a binary) or imported
(in the context of a programming language package manager).

npmjs.com
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To ease this maintenance burden, many package managers support some form of
(semi-)automated dependency updates. Package managers typically allow programmers
to write partially flexible constraints on version numbers of dependencies. For example,
a JavaScript programmer may specify that they depend on the package react, with
constraint ˆ18.1.1, which (in the semantics of NPM) means that updates are allowed
until but excluding version 19.0.0. Simultaneously, the publisher of react owns the
responsiblity of incrementing the version number from 18.x.y to 19.0.0 if and only
if that update introduces client-breaking changes. This particular scheme is known
as semantic versioning (“semver”), and is used widely by NPM and other similarly-
designed ecosystems (PyPi, etc.) Other schemes exist, with variance in the syntax
of both version numbers and version constraints. Generally though, flexible version
constraint systems allow developers of dependent packages to specify which types
of updates they are willing to automatically accept. Ideally, this helps developers to
express constraints and version numbers so that non-breaking important updates (such
as security patches) flow rapidly to downstream packages, while breaking changes are
delayed until developers choose to accept them.

The effectiveness of these systems depends on both formal questions (what are
the precise semantics of constraints, how are conflicts handled, etc.) and on human
behavior (of both package clients and publishers). Modern package managers support a
wide-array of version constraint syntax paired with complex solving algorithms, which,
while expressive, presents opportunities for both technical/formal deficiencies and
for human confusion/error. We start by exploring how programmers write version
numbers and constraints in practice within the NPM system in Chapter 3, and then
discuss a formal framework for dependency management in Chapter 4.
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E M P I R I C A L S T U D Y O F D E P E N D E N C Y C O N S T R A I N T S

3.1 introduction

Modern software development relies inextricably on open source package repositories
on a massive scale. For example, the NPM repository contains over two million pack-
ages and serves tens of billions of downloads weekly, and practically every JavaScript
application uses the NPM package manager to install packages from the NPM reposi-
tory. Understanding the properties of the software supply chain is vital, as it determines
if security patches and other updates will flow to downstream clients, and what attack
opportunities bad actors may have for malicious updates.

As discussed in Chapter 2, one particular concern is the technical lag [15, 25, 39,
112, 114] between installed and available dependency versions, and one potential
solution is semantic versioning (“semver”), in which versions are numbered in the form
major.minor.bug, where major denotes breaking API changes, minor denotes a non-
breaking change adding new functionality, and bug denotes a backwards-compatible
bug fix1[87].

However, there are three significant complications with semver in practice that can
lead to technical lag [15, 25, 39, 112, 114]. First, the positive properties of semver are
predicated on both upstream developers labeling their updates with the correct semver
increment type, and on downstream developers using constraints that are neither too
flexible nor too strict. Second, dependencies in the middle of a transitive dependency
chain affect the final received versions of dependencies. The downstream developer
may list a constraint that allows the most up-to-date version of a package, but if a
transitive dependency has a more restrictive constraint, the downstream developer
may not receive the up-to-date version. Third, allowing for automatic (bug) updates to
dependencies can be dangerous, as it introduces an attack vector for malware.

In this chapter, we aim to understand how developers make use of dependencies,
semantic versioning, and flexible version constraints at the ecosystem-scale, and how
all these factors intersect to affect developer experience and supply chain security. Prior

1 I use the term “bug” rather than the standard “patch” semver terminology, so as to disambiguate from
the notion of security patches.

9



10 empirical study of dependency constraints

work on mining data from the NPM ecosystem has primarily focused on answering
questions about NPM at a snapshot in time [4, 16, 52, 111]. Here, we first understand
how developers make use of semantic versioning by analyzing flexible constraint type
frequency and semver increment type frequency over the entire history of NPM. Then,
to understand how updates flow in practice at the ecosystem scale, we run large-
scale experiments that resolve packages’ dependencies at different snapshots in time,
observing how long it takes for updates to be received by downstream packages. To
enable these experiments, we built a tool that allows for accurate time-travel dependency
solving throughout the history of NPM. This methodology allows for more precision in
resolving dependencies throughout time compared to prior work [25, 26, 60, 113, 114]
which approximated NPM’s behavioral semantics, which are not well-specified [84].

In total, we have built the first dataset of NPM that includes (as of October 31, 2022):

1. every package on NPM (2,663,681 packages)

2. every version of every package (28,941,927 versions)

3. metadata (≈ 40 GB compressed) and packaged code (≈ 19 TB compressed) for
every version of every package,

4. full data of security advisories issued for NPM packages, downloaded from the
GitHub Security Advisory database.

This dataset is indexed to allow for easy querying and large-scale distributed compu-
tations. To gather this data, we designed and implemented a distributed system for
downloading, archiving and retrieving packages from NPM. We release our scraper
and dataset under the BSD 3-Clause license2.

We use our dataset to answer several questions about the NPM ecosystem, in par-
ticular how developers use semantic versioning, and how this affects supply chain
security:

• RQ1: Do developers specify dependency version constraints to allow for auto-
mated updates?

• RQ2: Do developers use semantic versioning in their package releases to allow
for automated updates to downstream packages?

2 Please see https://dependencies.science for access to up-to-date metadata, tarball data, and source
code. The original artifact excluding tarball data is available on Zenodo [82].

https://dependencies.science
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• RQ3: Do packages frequently contain out-of-date dependencies? And when
updates are published, how long until those updates are received by downstream
packages?

• RQ4: Among the types of semver updates, what types of high-level changes do
developers tend to make? How often do developers only update dependencies?

These results are impactful for both developers and researchers. We show that,
generally, the NPM ecosystem is effective in terms of efficient distribution of non-
breaking updates, but most packages end up with out-of-date dependencies anyways
due to the sheer volume of dependencies and updates to deal with. In addition, we
found evidence that some developers use semver non-optimally when releasing security
patches, and that minor and major semver updates appear to have a higher risk of
introducing security vulnerabilities.

3.2 methodology

At a high-level, we answer our four core research questions using different aspects of
our dataset and analysis systems. RQ1 and RQ2 are answered purely via analysis of
our scraped metadata. Answering RQ3 is more challenging as it requires reasoning
about how dependencies are resolved across time, which we answer by using our
time-traveling dependency resolver in large-scale experiments. Finally, to answer RQ4
we compute diffs between tarballs of package versions.

3.2.1 RQ1: Version Constraint Usage

Within NPM’s rich language for specifying version constraints on dependencies [78,
84], it is unclear which of the many constraint types developers frequently make use of
and how loose or restrictive those constraints are.

We classify version constraints in the following mutually exclusive categories:

1. Exact constraints ("=1.2.3") accept no versions other than the specifically listed
one;

2. Bug-flexible constraints ("˜1.2.3") accept any updates to the bug semver compo-
nent, so 1.2.4, etc.;
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3. Minor-flexible constraints ("ˆ1.2.3") accept any updates to the minor semver
component, so 1.3.0, etc.;

4. Geq constraints (">=1.2.3") accept any versions greater than or equal to the
specified version;

5. Any constraints ("*") accept any versions; and

6. Other constraints, such as disjunction, conjunction, GitHub URLs, etc.

We then examine frequencies of these constraint categories across NPM, segmented
by year so we can observe how constraint usage has evolved historically. In addition,
one challenge with analyzing data from NPM is that some packages publish a massive
number of versions (React has over 1,000 versions), so aggregating across all versions
may produce results that are biased towards packages with more versions. In RQ1 we
select only the most recent version of every package that was uploaded within each
year. This enables us to segment by time while avoiding this bias.

3.2.2 RQ2: Semantic Versioning in Updates

We now turn to examine how developers increment their semantic version numbers
when publishing updates. We first find all of the package updates that have occurred
in NPM’s history, and classify each as a bug (e.g. 5.4.8 → 5.4.9), minor (e.g. 5.4.8 →
5.5.0), or major (e.g. 5.4.8 → 6.0.0) update.

One would expect that updates can trivially be identified as consecutive versions of
the same package. NPM however allows versions to be published non-chronologically.
This feature allows for maintenance of parallel version branches. For example, consider
the following chronological order of versions: 1.0.0, then 2.0.0, then 1.0.1, and then
2.0.1. In this example, the mined updates should consist of: 1.0.0 → 2.0.0, 1.0.0

→ 1.0.1, and 2.0.0 → 2.0.1, as these reflect updates that are most closely based on
the source version while being chronologically and numerically consistent. We would
not include the update 1.0.1 → 2.0.0 because it is not chronologically consistent, and
thus 2.0.0 is unlikely to be a derivative of 1.0.1.

To determine the set of updates, we group versions by the equivalence relation of
same major component and assert that groups are ordered within themselves chrono-
logically. We then have updates between versions within each group, and between
different groups. Continuing the above example, we have two groups: {1.0.0, 1.0.1}
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and {2.0.0, 2.0.1}. From intra-group ordering we obtain 1.0.0 → 1.0.1 and 2.0.0

→ 2.0.1, and from the inter-group ordering we obtain 1.0.0 → 2.0.0. We believe this
algorithm reflects well how developers publish updates, and we discuss alternatives in
Section 3.6. When computing these updates, we first filter out all prerelease versions
(e.g. 1.2.3-beta5), yielding 1,453,789 packages with at least one update (of 2,869,085
packages). We then filter out 52,279 packages that do not have consistent intra-group
chronological orders.

With all updates and version increment types identified, we examine the distribution
of the three update types across the whole population, and then compare to the
subgroups of updates that introduce and patch vulnerabilities. Updates that patch
vulnerabilities are identified directly in the scraped advisory database, while we
identify versions that introduce vulnerabilities as the minimal version containing that
vulnerability. To avoid the bias introduced by some packages having a large number of
updates, our top-level aggregation is among packages rather than updates. For each
package, we identify the proportion of its updates of each type (segmenting by security
effect), and then visualize this percentage across all the packages. This enables us
to make conclusions about how packages and package developers generally handle
incrementing semver numbers during updates. In addition, note that when segmenting
by updates that introduce vulnerabilities, we are not attempting to study malware,
rather updates that (probably inadvertently) introduce a vulnerability.

3.2.3 RQ3: Out-of-Date Dependencies and Update Flows

The properties examined thus far have been local properties of each package, in that each
package has been analyzed individually. We now wish to answer how out-of-date NPM
packages typically are, and how long it takes updates to flow to downstream packages.
Both of these properties rely on all the packages in the transitive dependency closure
of a downstream package. However, reasoning precisely about how dependencies are
solved is challenging both because NPM’s dependency solving algorithm is complex
(Section 7.1.2), and because we wish to parameterize this over time.

In order to compute solutions accurately and at different points in time, we use
NPM’s solver combined with a proxy that emulates the world state at any given
point in history (described in Section 3.3.3). With this key tool, we then perform two
experiments: first we solve the dependencies of the most recent version of every package
in NPM and observe how many packages have out-of-date dependencies; we then
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explore how updates flow to downstream packages by solving the dependencies of the
downstream package at different points in time until it receives the update.

3.2.4 RQ4: Analyzing Code Changes in Updates

After having examined how developers use constraints and version numbers in isolation,
we next align that with a high-level characterization of what updates actually change.
For every identified update, we decompress the packaged code from both versions,
and look for file changes. We then classify changes as modifying dependencies (in
the package.json file), code (.js, .ts, .jsx, .tsx), both, or neither (such as only
modifying configuration files or updating a README file). We then examine the
distribution of these types of changes segmented by semver increment type, again
normalizing per-package to avoid biasing towards packages with more updates.

Analyzing at a deeper level is possible with our dataset, but is beyond the scope
of this work. Note that many packages upload compiled or minified JavaScript code,
which makes it difficult to even look at simple line-by-line diffs. In addition, we could
have chosen to count other file types as code (.sh, etc.), but we chose to focus on
JavaScript code.

3.3 system architecture

In order to perform our methodology, we needed a system that could scrape and
store all metadata and tarball data, and allow us to perform analyses and experiments
on both the metadata and tarball data. This system needs to be able to run on our
academic Slurm-backed [92, 110] HPC cluster. To solve this problem, we designed our
own system, organized into 3 primary components (Fig. 3.1):

1. The Metadata Manager, which continually scrapes data from NPM and periodi-
cally from the GitHub Security Advisory Database;

2. the Job Manager, which receives job requests (either tarball download jobs or
parallelizable compute jobs) and then coordinates job execution and distributed
file system locks; and

3. the Compute Cluster, in which we can spawn worker nodes and access a net-
worked file system.

We now explain how we accomplish the primary tasks required by our methodology.
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Figure 3.1: Overview of our system architecture.

3.3.1 Metadata Acquisition

NPM stores metadata in a CouchDB database. CouchDB is a document-oriented JSON
database and is a good fit for NPM because it is schemaless and allows for arbitrary
nesting of JSON objects, such as the package.json file. For performing data analysis we
find it to be a poor fit due to the extremely loose structure. There is almost no validation
of the package.json files in the CouchDB, making it difficult to use for analyses without
first cleaning the data (normalizing date formats, normalizing dependency formats,
etc.).

The Metadata Manager (top left of Fig. 3.1) continually receives metadata changes
from NPM via their changes API [75], validates those changes, and inserts the data into
PostgreSQL [41] (Metadata Database in Fig. 3.1). Additionally, the Metadata Manager
periodically scrapes the GitHub Security Advisory Database (GHSA DB in Fig. 3.1) and
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imports the security metadata into PostgreSQL as well. RQ1 and RQ2 can be answered
entirely via issuing PostgreSQL queries to the Metadata Manager.

When metadata changes are received that contain URLs to new package tarballs, the
Metadata Manager enqueues a tarball download job to then be handled by the Job
Manager.

3.3.2 Tarball Data Acquisition and Compute Cluster

For scraping and storing package tarballs, we need to be able to store tens of millions of
tarballs, while allowing for both concurrent writes to the storage since new tarballs are
downloaded continually, as well as concurrent reads from the storage when performing
analyses.

The worker nodes within the Compute Cluster are connected via a networked file
system. One interesting approach would be to use a technology such as Hadoop [32] on
top of the networked file system to accomplish this. However, we did not explore this
approach out of concern of Hadoop’s scalability with regards to storing many small
files [6] (our use case). In addition, we are are unsure if Hadoop can run correctly and
efficiently on top of a networked file system.

Instead, we store tarball data in a custom-built blob storage system stored on the
networked file system (bottom right of Fig. 3.1). The Job Manager (top right of Fig. 3.1)
controls access to the blob storage, keeping track of byte offsets and coordinating
locks for writing, while individual worker nodes in the Compute Cluster perform the
networked disk I/O.

Tarballs are downloaded when the Job Manager receives a tarball download job
request from the Metadata Manager, at which point it assigns the download job to a
single worker node. The Metadata Manager also offers an compute API which can
receive arbitrary Rust code to run as a parallel map operation across all packages. The
Job Manager handles compute job requests by distributing the compute task across
many worker nodes, compiling the Rust code on-demand, and optionally allowing
each node to perform lockless read-only operations from the blob storage.

This system allows us to continually scrape and store tens of millions of tarballs, and
to efficiently retrieve them for computation when answering RQ4. Additionally, while
RQ3 does not read from the blob storage, it follows the same compute workflow.
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3.3.3 Time-Traveling Dependency Resolver

In order to carry out our experiments outlined in Section 3.2 for RQ3, we needed to
be able to observe how a package’s dependencies would have been solved at arbitrary
points in NPM’s history. We built a proxy server that can be used with vanilla NPM to
enable time-travel dependency resolving.

NPM’s command line tool enables the user to specify a custom package registry to
use in place of npmjs.com. To use our time-traveling resolver, we specify a registry base
URL pointing to our proxy server that includes in the URL the timestamp to time-travel
to. The proxy server then receives the timestamp and can then rewrite responses from
npmjs.com to remove versions of packages after the timestamp. Since this does not rely
on the rest of our system, it is extremely easy to setup and use. However, in order to
scale the computation across the dataset, we use the compute capabilities discussed
above in Section 3.3.2.

3.4 results

At a high level, we would consider a package ecosystem to be healthy with regards
to update distribution when updates that are positive (performance improvements,
bug fixes, security patches, etc.) can be quickly and easily adopted by downstream
dependencies, while disruptive changes (security vulnerabilities, malware, etc.) flow
more slowly. In NPM, the flow of updates is determined by two factors: how do
downstream developers tend to specify version constraints for dependencies (RQ1), and
how do upstream developers tend to increment their version numbers when releasing
updates (RQ2). We start by explaining the overall structure and general properties
of the dataset. Then we move on to discuss RQ1 and RQ2 separately, and finally we
consider how RQ1 and RQ2 intersect in practice in the ecosystem (RQ3), and how they
are related to the actual contents of the updates (RQ4).

3.4.1 Dataset Structure and General Properties

As discussed in Section 3.1 our collected data is split into two parts:

1. Ecosystem Metadata: This includes the full list of packages (2,663,681 packages),
versions of every package (28,941,927 versions), and metadata for every version
including version upload times, version numbers, dependencies, descriptions,
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(b) An ECDF of the number of
(transitive) dependencies of
each package. This was col-
lected by resolving the latest
version of every package on
NPM as part of the experi-
ment in Fig. 3.5.

0%

25%

50%

75%

100%

20 25 210 215 220

Number of reverse dependencies (log scale)

C
um

ul
at

iv
e 

pe
rc

en
ta

ge
 o

f p
ac

ka
ge

s

(c) An ECDF of the number
of reverse (transitive) de-
pendencies of each package.
Note that the x-axis is log-
scaled. This was collected by
resolving the latest version
of every package on NPM
as part of the experiment in
Fig. 3.5.

Figure 3.2: ECDF plots of general properties of the NPM ecosystem with regards to versioning
and dependencies.

links to repositories, and more. We also have a full scrape of all security advisories
for NPM packages, including data on which versions are vulnerable and which
version(s) patch the vulnerability.

2. Tarballs of published packages: The full source tarball of every version of every
package3 has been downloaded by our system.

Before diving into the core research questions, we first discuss general properties
of the dataset. Fig. 3.2 displays three distributions regarding our main objects of
interest: updates and dependencies. Fig. 3.2a displays an ECDF (empirical cumulative
distribution function) of the distribution of the time between updates of packages,
computed across 1,401,510 packages and 16,547,653 mined updates (Section 3.2.2). A
surprising finding is how quickly updates are pushed out in many cases, with 25% of
updates spanning only 39.87 minutes or less, and 50% of updates spanning 22.71 hours
or less. However, a long tail of updates exists, with the top 25% of updates spanning
7.78 days or longer, and 10% spanning 40.12 days or longer. On average, updates span

3 excluding deleted content, which we describe in Section 3.6
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21.03 days. A manual inspection of the data suggests that update behavior is quite
bursty, with developers releasing multiple updates in rapid succession, and then going
silent for long periods of time; however, the underlying cause of this behavior could be
investigated more thoroughly.

Figs. 3.2b and 3.2c display ECDFs of the distributions of the numbers of (transitive)
dependencies and downstream packages (i.e. transitive reverse dependencies), respec-
tively. We selected the most recent non-prerelease version of every package with at
least one update (to filter out abandoned packages), yielding 1,401,510 packages. We
then used our time-traveling variant of NPM to resolve their dependencies and collect
transitive dependency relations between packages, disregarding versions. Solving de-
pendencies failed on some packages, due to both true solving failures with NPM (e.g.
missing dependencies) and transient system failures (discussed more in Section 3.6) in
the compute cluster. In total, our experiments include successful executions of NPM’s
dependency solver on 696,419 packages. The data shows that on average packages
have 167.87 dependencies, and 95% of packages have solution sizes of 636 or fewer
dependencies, with the largest solutions reaching up to 1,641 dependencies.

When turning to downstream packages however (Fig. 3.2c), the situation is quite
asymmetrical, as there is a vastly longer tail of packages with massive amounts of
downstream packages. The top 3 depended-upon packages that we observed were:
a) supports-color (does a terminal support color?, 624,883 downstream packages),
b) debug (logging library, 571,547 downstream packages), and c) ms (time conversion
library, 515,684 downstream packages). On the other hand, a large amount of packages
are unused except by a handful of downstream packages, with 50% of packages having
2 or fewer downstream packages, and 90% only being used by 30 or fewer downstream
packages.

3.4.2 RQ1: Version Constraint Usage

As described in Section 3.2.1, developers can specify version constraints in different
ways, which controls the installation of newer versions of those dependencies. Fig. 3.3
shows the frequency of each main type of version constraint published in each year
since 2010, the year that NPM launched. For each year, we include only packages that
had at least one release published, and if a package released multiple versions in that
year, we include only the most recently published non-prerelease version that year. In
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Figure 3.4: A boxplot visualizing the distri-
bution of percentages of pack-
ages’ updates by semver incre-
ment type, segmented across se-
curity effects. Within each se-
curity effect the percentages
across semver increment types
are normalized.

2022, there were a total 429,265 packages with at least one release, and across all the
years 1,678,681 distinct packages.

There are several interesting trends in constraint usage over time. First, about 78.36%
of all initial dependencies were specified as accepting any versions greater than some
particular version (Geq, purple bars), such as "react" : ">= 1.2.3". Developers then
abandoned using Geq constraints within the first 3-4 years of NPM, likely because they
became unmaintainable as libraries began to introduce breaking changes that would
be automatically applied by Geq constraints. Second, even though constraints that are
flexible in the minor component (Minor, green bars) currently represent a majority of
dependencies, the phenomenon of using minor flexible constraints only started in 2014,
and then rapidly expanded after. The expansion of minor flexible constraints coincides
with the decreased usage of bug component flexible constraints (Bug, blue bars). Third,
developers have recently gravitated towards using only two types of constraints almost
exclusively: exact version constraints (Exact, red bars) and minor component flexible
constraints. Together, those types represent over 94.85% of constraints in 2022. Finally,
the percentage of dependencies that are potentially able to automatically receive updates
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(everything below the red bars) has stayed relatively stable throughout the entire life of
NPM, and is currently about 87.32% of all dependencies.

3.4.3 RQ2: Semantic Versioning in Updates

While RQ1 examined the usage of semantic versioning when specifying dependencies,
RQ2 examines the usage of semantic versioning in deploying releases of those depen-
dencies. Fig. 3.4 displays boxplots where each observation represents what percentage
of a package’s updates are one of the three semver increment types, normalized across
security effect. This analysis includes 1,401,510 packages and 16,547,653 updates, as
described in Section 3.2.2.

We find that in the no security effect category (the vast majority of updates), the
most common updates by far are bug semver increments, with 75% of packages having
66% or more (lower quartile of left-most red box). Next most popular are minor semver
increments, and finally least most popular are major semver increments.

However, when we consider updates that introduce vulnerabilities, we see a different
story. Most packages introduce vulnerabilities via major semver increments, indicating
that vulnerabilities are often introduced when packages developers release major new
versions possibly consisting of many new features and significant structural changes to
the code base. We did however find 29 outlier packages that introduced a vulnerability
in at least one bug update. A particularly interesting example is an update to the
ssri package (a cryptographic subresource integrity checking library, 23M weekly
downloads) from version 5.2.1 to 5.2.2. The update attempted to patch a regular
expression denial of service vulnerability, but inadvertently increased the severity of
the vulnerability by changing the worst-case behavior from quadratic to exponential
complexity [11]. This highlights the challenge package developers face in needing to
quickly release patches to vulnerabilities, while needing to be extremely careful when
working on security-relevant code and releasing it through bug updates that will be
easily distributed to downstream packages.

Finally, in the case of vulnerabilities being patched, almost all patches are released as
bug semver increments, which means that the 87.32% of non-exact constraints shown
in Fig. 3.3 would potentially be able to receive them automatically. However, a handful
of outlier packages have released vulnerability patches as non-bug updates (we found
358 such updates across 298 packages). From manual inspection, it appears that many
of these updates include the fix for the security vulnerability mixed in with many other
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changes, rather than the vulnerability fix being released independently. For example,
update 1.6.0 to 1.7.0 of the xmlhttprequest package (1.2M weekly downloads) fixed a
high-severity code injection vulnerability [21]. The security-relevant part of the update
is only 1 line, but 892 lines were modified in the update. Without further investigation
we do not know why some developers have chosen to include security patches as part
of larger updates rather than as standalone updates.

3.4.4 RQ3: Out-of-Date Dependencies and Update Flows

3.4.4.1 How out-of-date are packages’ dependencies?

Version constraints and semver update types work in tandem to control the flow
of updates to downstream packages, across many chains of transitive dependencies.
Whether a downstream package receives up-to-date dependencies depends not only on
the constraints at the downstream package and the type of semver increment at the
reverse dependency, but also on packages in the middle of a transitive dependency
chain.

In this experiment, we select the latest version of every package with at least one
update (1,401,510 packages). We then use our time-traveling variant of NPM to solve
the package’s dependencies at the time the latest version was uploaded (TP). We then
observe which of its installed dependencies are out-of-date, where a dependency with
version VD and upload time TD is out-of-date if another version V ′

D of the dependency
has an upload time T′

D such that TD < T′
D < TP and VD < V ′

D. We then define the
out-of-date time as T′

D − TD for the largest such T′
D. After accounting for transient

system failures, 696,419 packages were solved successfully.
Fig. 3.5a displays an ECDF of the distribution of the percentage of each package’s

dependencies that are out-of-date. There is a group of packages, about 17.08%, that have
fully up-to-date dependencies. However, almost all of these have very few dependencies,
only 3.17 dependencies on average compared to 167.87 dependencies for the whole
sample. In other words, these fully up-to-date packages are packages that live primarily
on the far left side of the ECDF in Fig. 3.2b.

Moving beyond the spike of up-to-date packages, most packages have at least
some out-of-date dependencies, with 62.94% of packages having 25% or more of their
dependencies out-of-date. Not only are packages often out-of-date, but they are often
out-of-date for quite a while. Among packages with at least one out-of-date dependency,
Fig. 3.5b displays an ECDF of on average how out-of-date each package’s dependencies
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Figure 3.5: ECDF plots of technical lag distributions across the NPM ecosystem.

are. Half of all packages with out-of-date dependencies have on average dependencies
that are 173.87 days old or older, with a long tail of 5% of packages with dependencies
that are on average 527.38 days old or older. In contrast, updates are released within
21.03 days on average, and 50% are released within only 22.71 hours (Fig. 3.2a).

There can be a variety of reasons why packages have out-of-date dependencies, some
of which are intentional, such as developers choosing to stay on older versions of
libraries rather than rewrite code to handle breaking changes.

3.4.4.2 How rapidly do updates flow downstream?

We now wish to understand how updates flow to downstream packages, and how
developers respond when manual intervention is required. For the most recent update
prior to 2021 of every package, we randomly selected 50 downstream packages that were
up-to-date with the upstream package just prior to the update. Using our time-traveling
resolver we then solve the downstream package immediately after the update, and in 1
day increments afterwards until the dependency on the old version of the dependency
has been updated or deleted. In total, 888,294 update flows were successfully solved
after accounting for transient system failures.

Fig. 3.6 visualizes the process of how updates flow to downstream packages and
how often developer intervention is required. An update flow has multiple steps. First,
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Figure 3.6: Visualization of update flow
paths.

0%

25%

50%

75%

100%

0 25 50 75
Days for downstream to receive update

C
um

ul
at

iv
e 

pe
rc

en
ta

ge
 o

f f
lo

w
s

Figure 3.7: An ECDF plot of how long it
takes for an update flow that is
blocked to be resolved.

the upstream (dependency) developer publishes the update with a certain semver
increment type (major, minor, or bug). Once the update is marked as bug, minor,
or major and uploaded to NPM, it can then be received by downstream packages
that depend on it, possibly transitively. This can happen either automatically, by the
downstream developer manually updating or removing the dependency, or a developer
in the middle of the transitive dependency chain updating or removing the dependency.

Most commonly, downstream packages receive the update instantly and with no
human intervention needed (· · · → no intervention → instant update). This occurs
when the package that declares the constraint on the updated package uses a constraint
that is at least as flexible as the type of semver increment. Note that the package
declaring the constraint, and thus responsible for allowing or inhibiting the update
flow, could be either the final downstream package or a package in the middle of
the dependency chain. This type of flow occurs for the majority of bug and minor
updates, which is induced by the distribution of constraint types (Fig. 3.3). As this type
of flow is 90.09% of all analyzed update flows, it is by far the most common, indicating
overall positive health among our random sample of update flows through the NPM
ecosystem.

The second most common update flow consists of updates that require intervention
from the developer of the downstream package (and possibly developers of other
packages as well), and thus is delayed (· · · → intervention → delayed update). This
occurs in 9.01% of all analyzed update flows, and involves a major update 28.11% of
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the time, a minor update 40.27% of the time, and a bug update 31.62% of the time.
Updates requiring intervention are due to constraints that are more restrictive than
the semver increment type. Intervention thus involves developers either switching to a
more flexible constraint type or incrementing the constraint.

A small fraction (0.60%) of updates are resolved not by the developer of the down-
stream package performing an intervention, but by a developer(s) in the middle
(· · · → no intervention → delayed update). For this to occur, the developer of the
package in the middle must have specified a constraint that is too restrictive, while the
developer of the downstream package specified a flexible enough constraint to allow
for the intervention of the package in the middle to be adopted. Since this type of flow
happens very rarely, this indicates that downstream packages typically use constraint
tyes that are equally or more restrictive than the types of constraints their (transitive)
dependencies use. This makes sense from a software engineering perspective, as the
deeper packages (those closer to libraries rather than applications) have more incentive
to use flexible constraints as they are likely to be reused in contexts with otherwise
conflicting constraints.

The final type of flow is when the out-of-date dependency is eventually deleted
rather than updated (· · · → intervention → deleted dependency). This occurs in only
0.29% of all analyzed update flows, indicating that developers do not generally delete
dependencies.

Among the update flows that are blocked due to restrictive constraints, almost all
update flows are unblocked via manual intervention quite rapidly. Fig. 3.7 shows
an ECDF of the distribution of how many days it takes for each update flow to be
unblocked. The majority of blocked update flows (91.74%) are unblocked within 1 day,
with a tail trailing off to 25 days or more. The surprising speed of update flows being
unblocked is due largely to the fact that many packages that depend on each other are
developed by the same contributors, and they will often bump version numbers and
update dependencies of their packages nearly simultaneously.

Our results suggest that most updates effectively flow to downstream packages,
while Fig. 3.5 suggests that most downstream packages have at least some out-of-date
dependencies. We suspect this is due in part to the number of dependencies per-package
(Fig. 3.2b) and the rate of updates (Fig. 3.2a). With packages having an average of 167
dependencies, and updates being released on average every 21 days, we would expect
that for an average package every day multiple dependencies release updates and
potentially go out-of-date. Even with many updates being adopted instantly or quickly,
some dependencies will become stale. This phenomena might also be explained by



26 empirical study of dependency constraints

Figure 3.8: A boxplot displaying the distribution of the percentage of packages’ updates grouped
by semver increment type that change only code (.js, .ts, .jsx, .tsx), only
dependencies, both, or neither.

our methodology for this experiment, as we selected only packages that were already
up-to-date at the time of our analysis.

3.4.5 RQ4: Analyzing Code Changes in Updates

We now turn to inspecting the contents of package updates rather than metadata analysis.
Semantic versioning can only be useful if package developers release updates that
are in accordance with what downstream packages expect from bug, minor, or major
semver increments. In this work, we focus on providing a high-level characterization of
what updates generally consist of in the NPM ecosystem, across the different update
types. While more fine-grained analyses and related applications would be interesting
and useful, it is beyond the scope of this work, and we defer discussion of ongoing
and future work to Section 3.5. However, we believe that our dataset may be a useful
building block for evaluation within the active research area of update analysis systems.

Fig. 3.8 displays a boxplot where each observation is the percentage of a package’s
updates within each semver increment type that change only code (.js, .ts, .jsx,
.tsx), only dependencies, both, or neither. Note that updates categorized as neither
may include other changes such as modifications to other file types (README, CSS, etc.)
or other metadata changes besides dependencies. This uses the same set of packages
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and updates as from Fig. 3.4, intersected with those we were able to successfully
download tarballs for, giving in total 1,339,684 packages and 14,903,021 updates.

First, we see that bug updates often contain no changes to code files, or to depen-
dencies. 50% of packages change neither code nor dependencies in about 20% or more
of their bug updates, while 25% of packages change neither in a majority (64%) of
their bug updates. A manual inspection of the data suggests that some of these up-
dates consist of changes to metadata (listed contributors, descriptions, READMEs) or
to configuration files (.json, .yaml, etc.), while other updates truly change nothing.
However, more investigation on our data could be done to quantify this more precisely.
Second, while it is not common to do so, 25% of packages do occasionally release bug
updates which only modify dependencies (11% or more of bug updates). Looking at
minor and major updates, the frequency of packages modifying neither or only one or
the other decreases, and when looking at major updates, most packages modify both
code and dependencies simultaneously. In combination with the results of RQ2, we see
that overall, minor and major updates appear to present a higher degree of risk (larger
changes and/or security vulnerabilities) than bug updates.

3.5 discussion

Considering the results that we presented in Section 3.4, we find a number of impli-
cations for software developers, ecosystem maintainers and researchers. Developers
consuming dependencies face persistent trade-offs between security, reliability, and
technical lag. We identify opportunities for ecosystem maintainers to reduce some of
this friction and point towards longer-term research directions to address some of the
underlying challenges in package ecosystems.

3.5.1 For Developers

Our findings for RQ1 indicate that NPM has largely consolidated around using either
exact or minor-flexible (ˆ) constraints, with the greatest proportion of dependencies
specified as minor-flexible. In practice this means that minor updates will flow to down-
stream packages nearly as easily as bug updates, which we confirmed experimentally
in RQ3.2, with 95.42% of sampled bug updates and 86.55% of sampled minor updates
flowing automatically to downstream packages. This finding is important for library
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maintainers, who might expect that downstream packages will manually inspect minor
updates for compatibility.

Overall, there is a misalignment between the way that versions are released and
the way that they are depended on, as versions that are released as minor vs. bug
updates commonly have distinct characteristics (Figs. 3.4 and 3.8), while dependencies
in downstream packages rarely distinguish between minor or bug updates (Fig. 3.3).
Specifically, we find that 81.19% of updates are released as bug updates, but 84.01%
of dependency constraints accept bug and minor updates. While both bug and minor
updates are supposed to maintain backwards compatibility, since minor updates may
be more likely to include (inadvertent) breaking changes, developers may benefit in
stability by using bug-flexible (~) constraints rather than minor-flexible constraints,
which would still receive 81.19% of updates. This motivation may be even stronger
for security-cautious developers as our results suggest that minor updates introduce
vulnerabilities more often than bug updates, however they must remain careful as even
bug updates occasionally introduce vulnerabilities.

3.5.2 For Ecosystem Maintainers

Our findings in RQ2 indicated that some developers release security patches with minor
and sometimes, even major version increments. This finding is concerning as it makes
it more difficult for downstream packages to receive the security fixes. This suggests
that ecosystems may benefit from ecosystem maintainers attempting to have tighter
communication with package developers around security patches, and help ensure that
security patches are released in a timely manner, with minimal changes, and as semver
bug updates.

Our findings in RQ3.2 show a small fraction of update flows that are blocked
by dependencies in the middle. For example, the vt-pbf package (a geographic
data file serializer, 900K weekly downloads) has a exact version constraint on the
@mapbox/point-geometry package, and thus consumers of the vt-pbf package will
not receive updates to @mapbox/point-geometry unless vt-pbf specifically releases an
update bumping the version number. This is perhaps the most frustrating case for
developers, as it is difficult to remedy the situation. One option is to use NPM’s over-
rides feature [74], which allows the downstream package to forcefully override versions
of transitive dependencies, even if this breaks version constraints. While this can be
effective in the short-term, one challenge is that the developer now has the maintenance
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burden of removing the override when it is no longer necessary, or else face out-of-date
dependencies in the future. To improve the developer experience, ecosystem main-
tainers could a) reduce the frequency of update propagation blockage by combining
our analysis with centrality analysis to find critical packages that often block update
flows, and work with them to address the situation; and b) improve ecosystem tooling
around overrides to help developers automate the removal of overrides when no longer
necessary.

3.5.3 For Researchers

Our findings in RQ2 indicate that while NPM developers generally try to follow semver
conventions, they do not always do so consistently, and thus developers of downstream
packages can not be entirely confident about what exactly they will receive when
updating dependencies (particularly if malicious developers release malware!). This
suggests a useful and broad design space of static or dynamic program analysis tooling
that could help give insight on what actually changes in an update. Such tools could
aim to check for semver compliance [54, 77], check that an update actually patches
a vulnerability correctly, check for likely buggy changes in behavior [107], or detect
malware. It may be particularly interesting to examine trends in semver compliance
over time, as our analysis shows clear trends in the changing popularity of dependency
constraints between 2010–2022.

There is already promising ongoing work in some of these directions, particularly
malware detection [94, 95, 111] via metadata and lightweight syntactic features. In
RQ4 we found that a significant portion of packages publish bug updates that change
neither js, ts, jsx, tsx files, nor dependencies, which suggests that a sizeable portion
of updates may be changing other types of files, and that these changes may be an
effective place for bad actors to hide malicious changes, such as introducing malicious
changes to shell scripts embedded within .yaml continuous integration configuration
files. Whether the aim of this work is malware detection, bug detection, or other
analyses, our results suggest that such tooling should aim to handle multiple file types,
such as code, config files, embedded binaries, shell scripts, etc.

The analysis in RQ3.1 finds that there is a substantial amount of technical lag in NPM
packages, so tooling to help developers reduce technical lag could be quite impactful.
In Chapters 4 and 5 we build a tool, MaxNPM, which allows developers to solve
dependencies in a way that minimizes technical lag (or other objectives) while still
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satisfying current version constraints, but does not help when constraints themselves
are out-of-date. Complementary future research, such as what Jayasuriya suggests [50],
could assist developers in performing these manual updates by helping with code
migration in response to breaking changes.

3.6 threats to validity

3.6.1 External Validity

We were unable to reliably scrape packages that have been deleted (for malware,
copyright violations, etc.) or unpublished (voluntarily by the developer) from NPM,
and thus we excluded these in our analyses. For this reason our results might not
generalize to malware or other types of packages that are often deleted.

Other than deleted packages, we consider the entire ecosystem, including so called
“trivial” packages [16, 52] and packages that seem unimportant (e.g. few reverse depen-
dencies). We believe that it is difficult to tell if a package truly is irrelevant, as even a
package with very few reverse dependencies may in fact be an application that has been
published on NPM. Furthermore, “low-impact” developers are nevertheless important
as their experience with NPM matters for the future of the ecosystem.

We only obtain packages from NPM, and do not consider GitHub or other sources.
As such, this study may not generalize to JavaScript applications (rather than libraries),
as only some developers choose to publish their applications on NPM. In addition,
some developers may include dependencies by directly copying source files into their
packages, which we do not detect. Finally, it is important to be careful when generalizing
our results about security vulnerabilities, as we are only able to obtain information
about known vulnerabilities, which is likely a small subset of all vulnerabilities.

3.6.2 Internal Validity

Our system described in Section 3.3 is complex and it is possible that there are bugs in
our system that could affect the results of our experiments. For example, we may have
missed some packages in our scraping process, or we may have incorrectly downloaded
some packages. We believe that this is unlikely, as we have written unit tests for our
system and have tested it on a small subset of packages, and have not found any bugs.
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While running millions of package installations for RQ3 (Section 3.4.4) we caused
intermittent failures on our compute cluster by overflowing /tmp. Since these failures
were a function of system state and not of packages, we do not believe this biased
our results. To check this, we computed the mean and median of the number of
direct dependencies of successful and failed packages, and found that successful
packages have a mean of 9.91 direct dependencies and a median of 5, while the failed
packages have a mean 10.93 direct dependencies and a median of 6. This suggests that
failed packages were a bit larger, but not enough to make our successful packages
unrepresentative. Outliers with a large number of dependencies existed with both failed
and successful packages.

3.6.3 Construct Validity

Throughout RQ2–RQ4 we use our algorithm for computing updates as described in
Section 3.2.2. Since there is no ground truth for correctly mined updates, one may
wish to consider refinements to this algorithm. In particular, one may wish to have
fine-grained equivalence classes by considering minor components as well. However,
this would not change the results where our algorithm already succeeds, and since the
rejection rate is already quite low (1.8%) we did not believe a more complex algorithm
justified the risk of analysis bugs.

In RQ4 we defined code changes to mean files with extensions .js, .ts, .jsx, or
.tsx. This is because we wanted to focus on JavaScript and TypeScript code, but this
may have caused us to miss some JavaScript or TypeScript code with other extensions.
Depending on the purpose, future work might want to consider a broader definition of
what counts as code, such as shell scripts.

3.7 conclusion

We present a large-scale analysis of semantic versioning in NPM, and a full, reusable
dataset of complete package metadata and tarball data from NPM. We find that there is
a higher risk of security vulnerabilities being introduced through minor rather than bug
(i.e. patch) semver updates, suggesting a motivation for developers to use bug-flexible
constraints (~), even while the NPM ecosystem has largely abandoned them in favor of
minor-flexible constraints (ˆ). While we find that most security patches are introduced
in bug updates, we find a disturbing set of outliers that are released as minor or even
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major updates, potentially causing slower adoption of security patches. Future work
examining the NPM ecosystem might build on our dataset and tooling, examining the
contents of updates for bugs and/or vulnerabilities, along with mechanisms to mitigate
technical lag.

3.8 data availability

Our artifact permanently archived on Zenodo [82] contains our tools and the metadata
from our dataset.



4
PA C S O LV E : A F O R M A L M O D E L O F D E P E N D E N C Y
M A N A G E M E N T

4.1 the landscape of dependency solving

The design space of existing dependency solvers is large and varied. To better under-
stand the subject we wish to formally model, we first describe several features that
dependency solvers share, and highlight differences in their semantics.

4.1.1 Versions and Constraints

In modern package managers, programmers typically write constraints (often ranges)
that describe allowable versions of dependencies. These constraints allow the depen-
dency solver to semi-automatically update dependencies and to unify dependencies
to share code. For example, suppose foo and baz both require bar and constrain the
version to be 1.n.m, ∀n, m ∈ N. This kind of constraint would allow the dependency
solver to find a single version of bar for both packages. This is a common type of
constraint: version 2.0.0 may break compatibility with versions 1.n.m.

Unfortunately, it is not always straightforward to express this constraint to a depen-
dency solver. Each dependency solver has its own little DSL for specifying version
constraints. However, these DSLs can behave in surprising ways. In the NPM ecosystem,
we can write 1.n.m as follows (spaces indicate conjunction):

"bar": ">=1.0.0 <2.0.0"

This constraint works as expected. We can also write a range constraint in Maven, as a
half-open interval:

[1.0.0, 2.0.0)

Unfortunately, this constraint does not work as expected. Suppose there is a pre-
release version of bar numbered 2.0.0-alpha-1 in the package repository. If so, Maven
will install the incompatible pre-release package, because 2.0.0-alpha-1 < 2.0.0. This

33



34 pacsolve : a formal model of dependency management

interpretation of constraints makes it difficult to use ranges in Maven [53]. In contrast,
NPM interprets ranges differently and would not install the pre-release version [72].

4.1.2 Version Conflicts

What should a dependency solver do when conflicting constraints occur? Different
dependency solvers address conflicts in very different ways. To illustrate, we consider a
tiny subset of the npmjs.com repository (Fig. 4.1a): three versions of the package ms (a
collection of calendar functions), and one version of the package debug, which depends
on the latest version of ms. Suppose a programmer requires both debug and ms, but
notices a performance regression in the latest version of ms. They may reason that their
code should use an older version of ms, but it is okay for their debugging code, which
is not performance-sensitive, to continue to transitively require the latest version that
has the performance regression.

ms

1.0.0

ms

2.1.0

ms

2.1.2

debug

4.3.4

(a) Available packages

"dependencies": {

"debug": "*",

"ms": "< 2.1.2"

}

context
ms

2.1.0

debug

4.3.4

ms

2.1.2

(b) JavaScript/NPM

debug

ms<2.1.2

Unsolvable

(c) Python/PIP

[dependencies]

debug = "*"

ms = "< 2.1.2"

context
ms

1.0.0

debug

4.3.4

ms

2.1.2

(d) Rust/Cargo

Figure 4.1: The debug package (a debug logging library) and ms package (a library to convert
times values to miliseconds) are available on npmjs.com, with 16.4 billion and 12.6
billion total downloads, respectively. Fig. 4.1a shows a subset of the versions of
each package, and debug’s exact version constraint on ms. Figs. 4.1b to 4.1d illustrate
the three different results generated by NPM, PIP, and Cargo if the programmer
were to ask for any version of debug and any version of ms strictly less than 2.1.2,
supposing the versions shown in Fig. 4.1a are all the versions in the universe.

Given these constraints, NPM installs both versions 2.1.0 and 2.1.2 of ms (Fig. 4.1b).
In general, NPM allows several versions of a package to be co-installed and loaded at

npmjs.com
npmjs.com
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runtime.1 However, this behavior is not always desirable, and can lead to increased
code size, and subtle runtime bugs. Moreover, NPM does not guarantee that packages
are only duplicated when strictly necessary.

Suppose NPM used PIP’s dependency solver that does not allow duplicate packages.
Moreover, PIP backtracks to find a solution if necessary. In this example, PIP would
report that the dependencies are unsolvable (Fig. 4.1c). While this is an unfortunate
outcome for the programmer, PIP behaves this way because the Python module system
cannot load multiple package versions of the same package. However, an advantage of
this approach is that it reduces code size and avoids compatibility problems.

Cargo attempts to strike a balance between NPM and PIP, by disallowing two minor
revisions of the same package to be co-installed. In this case, versions 2.1.0 and 2.1.2

can’t be co-installed, so Cargo would choose to co-install 1.0.0 and 2.1.2 (Fig. 4.1d).
Arguably, this solution is worse than the NPM solution, since the program is forced to
directly depend on a much older version of ms. Like PIP, Cargo backtracks to find a
solution, if one exists.

Unfortunately, it is not clear which (if any) of these policies are the best, and program-
mers in different scenarios may want different policies. A goal of PacSolve is to make
these choices more transparent via a formal semantics, and ultimately configurable by
the programmer.

4.1.3 Optimization Objectives

Apart from satisfying dependency constraints, most dependency solvers also try to bias
which versions of dependencies they choose. For example, PIP, NPM and Cargo all
prefer to select newer versions rather than older versions of a dependency. These solvers
all do so greedily, so the final solution depends on the order in which the dependency
solvers explore the solution space. NPM and PIP are sensitive to the order in which
developers list dependencies, whereas Cargo’s dependency solver is sensitive to the
lexicographic order of package names. Regardless, all of these dependency solvers
optimize greedily, and do not attempt to find globally optimal solutions.

A more fundamental problem is that what it means to be a newer package is not
well defined. Suppose package A has versions 1.0.0 and 2.0.0, and then its author
publishes a security update to the older version numbered 1.0.1. What happens if a
program depends on A with no constraints? Cargo and PIP will both prefer to choose

1 The exception to this rule are peer dependencies, which are not automatically installed.
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2.0.0 since it has a larger version number, whereas NPM will choose 1.0.1 because it
was uploaded last.

4.1.4 Solution Spaces

Dependency solvers use different data structures to represent the solution space. Linux
system package managers (e.g. APT), typically model installed packages as a set, e.g.
libpng either is or isn’t installed. PIP behaves in a similar way, and requires virtual
environments to install multiple versions of a package. Prior work on using SAT solvers
for package management encoded a solution space of installed package sets into SAT
formulas, with one boolean variable per installable dependency [101].

However, a set representation is inadequate for NPM and Cargo. Consider again the
solution presented in Fig. 4.1b. The dependency solver has to keep track of not only
that ms versions 2.1.2 and 2.1.0 are installed, but also ensure that each dependency
on ms refers to the right version. This naturally leads to modeling solutions as directed
graphs, which generalizes the set model.

Unfortunately, a directed graph is still not expressive enough for Cargo, which allows
a package to explicitly and directly load several versions of the same dependency by
giving each version a alias name [12]. To support this behavior, the dependency solver
must be able to match each resolved dependency version with each constraint, and
also handle the case where the two constraints resolve to the same version. We can
represent these solutions as directed multi-graphs, generalizing the directed graph.
Finally, an additional variable in solution space design is that Cargo disallows cycles in
the solution graph, whereas NPM freely allows cycles.

4.1.5 Why a Semantics?

Package managers evolve, and existing package managers have made significant
changes to their dependency solvers over time. It is easy to imagine building a new
version of NPM that tries to find globally optimal solutions, or unify dependencies
in the style of PIP. But, we believe that this would just be yet another point in the
dependency solver design space, and not a principled approach to the problem.

Instead, we next present a parameterized semantics for dependency solving that
makes it possible to compactly express a variety of different dependency solving



4.2 a semantics of dependency solvers 37

policies. Moreover, the semantics is executable, and we build on it in Chapter 5 and
Chapter 6.

4.2 a semantics of dependency solvers

This section first presents PacSolve. We then give some examples of dependency solver
specifications for PacSolve.

4.2.1 A Relational Semantics of Dependency Solvers

In the abstract, a dependency solver can be thought of as a function that receives as
input a) metadata about available packages from package repositories, and b) a root
package to install. Its output is a solution graph whose nodes are particular package
versions drawn from the set of available packages. Hidden in this function are design
decisions summarized in Section 4.1. In contrast, we formulate PacSolve as a relation
(Fig. 4.2) to account for dependency solvers that may admit multiple solutions. S is
a ternary relation between package metadata (M), a dependency solver specification
(F ), and a solution graph (G).

package metadata The package metadata (top of Fig. 4.2) is a tuple that has
1) a set of package name and version pairs (N ), and 2) a finite map (deps) from these
name-version pairs to a list of dependencies (D). Each dependency specifies a package
name and a version constraint (C ) on that package. The syntax of package versions (V)
and version constraints (C ) varies between dependency solvers, and their semantics is
determined by the dependency solver specification, which we describe below. Without
loss of generality, we assume that all package names are strings and that there is a
distinguished root package (root ∈ N ).

dependency solver specification The dependency solver specification is a
4-tuple with the following components:

1. A constraint satisfaction predicate that consumes a constraint and a package version,
and determines if that version satisfies the constraint (sat);

2. A version consistency predicate that consumes two package versions and determines
if those two versions of the same package may be co-installed (consistent);
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Package Metadata

P ::= String Package Names

V is a set Version Numbers

C is a set Version Constraints

D ::= P × C Dependencies

N ⊆ P × V Package repository (finite set)

deps : N ∪ {root} fin−→ D∗ Dependencies per node

M ::= ⟨N , deps⟩ Package metadata

Dependency Solver Specification

sat : C → V → Bool Constraint satisfaction semantics

consistent : V → V → Bool Version consistency versions

cycles_ok ∈ Bool If cycles are permitted in solution graphs

minGoal : G → Rn Objective functions

F ::= ⟨sat, consistent, cycles_ok, minGoal⟩ Dependency solver specification

Solution Graph

NR ⊆ N ∪ {root} Package versions in solution

DR ∈ NR → N∗
R Solved dependencies

G ::= ⟨NR, DR⟩ Solution graphs

The PacSolve Relation

S ⊆ 2F × 2M × 2G

For all (⟨sat, consistent, cycles_ok, minGoal⟩, ⟨N , deps⟩, ⟨NR, DR⟩) ∈ S :

1. root ∈ NR

2. ⟨NR, DR⟩ is connected

3. ∀n.n ∈ NR =⇒ |DR(n)| = |deps(n)|
4. ∀n.n ∈ NR =⇒ ∀i.0 ≤ i < |DR(n)| =⇒ ∃p, v, c. (p, v) = DR(n)[i] ∧ (p, c) = deps(n)[i] ∧ sat(c, v)

5. ∀p, v, v′. (p, v), (p, v′) ∈ NR =⇒ consistent(v, v′)

6. ¬cycles_ok =⇒ ⟨NR, DR⟩ is acyclic

Figure 4.2: The PacSolve Model of Dependency Solving
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3. A flag that determines if the solution graph may have cycles (cycles_ok); and

4. An objective function that consumes a solution graph and produces its cost
(minGoal).

solution graphs The result of a dependency solver is a solution graph (G). A
solution graph is a directed graph, where the nodes are package-version pairs, and
each node has an ordered list of edges. The order of edges corresponds to the order
of dependencies in the package metadata. For example, suppose the dependencies of
root are the packages A, B, C (with some constraints) in the package metadata. If so,
the outgoing edges from root in the solution graph would refer to specific versions of
A, B, C in the solution graph.

semantics The semantics of PacSolve is a relation (S) that holds when a solution
graph is valid with respect to the package metadata and the dependency solver specifi-
cation. The relation holds if and only if the following six conditions are satisfied. First,
the solution graph must include the root:

root ∈ NR

Second, the solution graph must be connected, to ensure it does not have extraneous
packages:

⟨NR, DR⟩ is connected

Third, for all packages in the solution graph, every edge must correspond to a constraint
in the package metadata:

∀n.n ∈ NR =⇒ |DR(n)| = |deps(n)|

Fourth, for every edge in the solution graph that points to package p with version v,
the corresponding constraint in the package metadata must refer to package p with
constraint c, where v satisfies c:

∀n.n ∈ NR =⇒ ∀i.0 ≤ i < |DR(n)| =⇒
∃p, v, c. (p, v) = DR(n)[i] ∧ (p, c) = deps(n)[i] ∧ sat(c, v)

The criteria so far are adequate for many dependency solvers, but permits solutions
that may be unacceptable. For example, without further constraints, a solution graph
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may have several versions of the same package. Thus the fifth condition ensures that
if there are versions of a package in the solution graph, then the two versions are
consistent, as judged by the dependency solver specification:

∀p, v, v′. (p, v), (p, v′) ∈ NR =⇒ consistent(v, v′)

NPM allows arbitrary versions to be co-installed (so consistent is the constant true
function), Cargo only allows semver-incompatible versions to be co-installed, and PIP
only allows exactly one version of a package to be installed at a time (so consistent
requires v = v′).

A final distinction between dependency solvers is whether or not they allow cyclic
dependencies. NPM and PIP support them, whereas Cargo does not. Thus the sixth
condition uses the dependency solver specification to determine whether or not cycles
are permitted:

¬cycles_ok =⇒ ⟨NR, DR⟩ is acyclic

These six conditions determine whether or not a solution graph is correct with respect
to the semantics of a particular dependency solver.

4.2.2 Example: A Fragment of NPM in PacSolve

We now present a dependency solver specification (F ) for a fragment of NPM. MaxNPM
is a complete implementation that we discuss in Chapter 5.

In the concrete syntax of NPM, versions are represented as JSON strings. For example,
the string "x.y.z" represents the version x.y.z using semantic versioning (semver): each
decimal represents a major, minor, and bugfix version, respectively. Incrementing a
major version indicates a break in backward compatibility; incrementing a minor
version indicates that features have been added, but none break existing APIs; and
patch version differences indicate bugfixes that have no effect on the compatibility of
two versions. NPM also uses strings to represent constraints, and supports a variety
of operators, including conjunction, disjunction, upper and lower bounds, and semver
compatibility. It is straightforward to translate these version and constraint strings to
equivalent S-expressions: we represent a version as a list of three numbers, (x y z)

and constraints as shown in Fig. 4.3a. With both constraints and versions written as
S-expressions, we can write the version-constraint satisfaction predicate as a recursive
function in Racket, which uses pattern matching to compactly interpret ranges and
semver compatibility (Fig. 4.3b).
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V := (x y z) Version numbers

C := (= x y z) Exact

| * Any

| (<= x y z) At most

| (>= x y z) At least

| (∧ x y z) Semver compatible with

| (and C1 C2) Conjunction

| (or C1 C2) Disjunction

(a) Example of V and C , allowing conjunction, disjunction, and range operators on semver-style versions.

1 (define (sat c v)

2 (match `(,v ,c)

3 [`((,x ,y ,z) (= ,x ,y ,z)) #true]

4 [`(,_ *) #true]

5 [`((,x ,y ,z1) (<= ,x ,y ,z2)) (<= z1 z2)]

6 [`((,x ,y1 ,z1) (<= ,x ,y2 ,z2)) (< y1 y2)]

7 [`((,x1 ,y1 ,z1) (<= ,x2 ,y2 ,z2)) (< x1 x2)]

8 [`((0 0 ,z1) (^ 0 0 ,z2)) (= z1 z2)]

9 [`((0 ,y ,z1) (^ 0 ,y ,z2)) (>= z1 z2)]

10 [`((0 ,y1 ,z1) (^ 0 ,y2 ,z2)) #false]

11 [`((,x ,y ,z1) (^ ,x ,y ,z2)) (>= z1 z2)]

12 [`((,x ,y1 ,z1) (^ ,x ,y2 ,z2)) (> y1 y2)]

13 [`(,_ (and ,c1 ,c2)) (and (sat c1 v) (sat c2 v))]

14 [`(,_ (or ,c1 ,c2)) (or (sat c1 v) (sat c2 v))]

15 [`((,x1 ,y1, z1) (>= ,x2 ,y2 ,z2)) (sat `(,x2 ,y2 ,z2) `(<= ,x1 ,y1 ,z1))]

16 [_ #false]))

(b) A sat interpretation function for V and C defined in Fig. 4.3a.

Figure 4.3: Example of V , C , and sat
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1 (define (minGoal-num-deps g)

2 (length (graph-nodes g)))

(a) Minimize the total number of installed depen-
dencies.

1 (define (minGoal-duplicates g)

2 ; we count how many times

3 ; each package name occurs

4 (define package-counts (foldl

5 (lambda (n counts)

6 (define p (node-package n))

7 (hash-set counts p

8 (add1 (hash-ref counts p 0))))

9 (make-immutable-hash)

10 (graph-nodes g)))

11

12 ; then assign a cost of 1

13 ; for each duplicate

14 (apply +

15 (map

16 (lambda (c) (max 0 (sub1 c)))

17 (hash-values package-counts))))

(b) Minimize the total number of co-installed ver-
sions of the same package.

1 (define (minGoal-oldness g)

2 (apply +

3 (map

4 (lambda (n)

5 (get-oldness

6 (node-package n)

7 (node-version n)))

8 (graph-nodes g))))

9

10 (define (get-oldness p v)

11 ; The get-sorted-versions retrieves

12 ; a list of all versions of p

13 (define all-vs

14 (get-sorted-versions p))

15 (if (= (length all-vs) 1)

16 0

17 (/ (index-of all-vs v)

18 (sub1 (length all-vs)))))

(c) Minimize the amount of “oldness” present
in the solution graph. Each resolved depen-
dency contributes an oldness proportional
to its rank among the total ordering of ver-
sions of that package

Figure 4.4: Three different examples of PacSolve minimization objectives
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4.2.3 Example: Objective Functions

The goal of a dependency solver is to find a solution that is not only correct, but
also good by some metric. Some dependency solvers prefer to install versions with
larger version numbers, whereas others prefer to install more recently uploaded ver-
sions. Other metrics are possible as well, such as total download size or number of
dependencies [101] and multiple prioritized objectives [33, 35]. PacSolve takes an
objective function that maps a solution graph to a sequence of numbers that represent
a prioritized list of minimization criteria (minGoal : G → Rn).

Figure 4.4, defines three examples of minimization functions, to give an example of
concrete criteria. The first example (Fig. 4.4a) is the simplest: given a solution graph G,
it returns how many nodes are in G, thus minimizing the total number of dependencies.
The second example (Fig. 4.4b) minimizes the co-installation of multiple versions of the
same package. The function first counts how many nodes there are in the graph for
each package. Then, for each package, we assign a cost of 1 for each extra node, and
sum all the costs up. The third example (Fig. 4.4c) is an interpretation of the common
goal that package managers have of trying to choose newer versions of dependencies.
In this example, each node in the graph is assigned an oldness, which is a linear score
between 0 (newest) and 1 (oldest) of that version’s rank in the total ordering of versions
for that package. These oldness scores are then summed up across the graph. There are
two subtleties with this definition. 1) The choice to perform minimization rather than
maximization is important, as a goal of maximizing a newness score, e.g. 1 meaning
newest, 0 meaning oldest, would encourage the solver to find very large solution graphs
so as to inflate the total newness. 2) The choice to sum rather than average the oldness
values likewise discourages the solver from adding in a lot of new nodes so as to inflate
the mean oldness.

4.3 reasoning about dependency solvers with pacsolve

PacSolve gives us a way to write down the (missing) formal specification of a depen-
dency solver. In this section, we sketch what a PacSolve-based semantics would look
like for PIP, NPM, and Cargo. We then state some simple, universal properties that we
believe any dependency solvers should satisfy. Notably, these are universal properties
that are independent of an implementation. We then ask if the implementations of PIP,
NPM, and Cargo satisfy these properties. Our testing suggests that PIP satisfies two
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of three properties, while PIP and NPM only satisfy one property. Finally, we state
additional properties about how we believe a package manager’s dependency solver
should relate to the semantics of the module system of its programming language.
We summarize which of these properties are satisfied by popular language package
managers in Table 4.1.

4.3.1 Specifying Versions and Version Constraints

A package manager can choose a syntax for version numbers that stores any data
necessary to disambiguate configurations of a package. For example, an accurate
structure of version numbers for NPM contains not only three numbers for a semver
version, but an additional field for optional release tags: e.g., 1.2.3-alpha1. Python’s
PIP package manager uses version numbers that are fully compatible with semantic
versioning, with similar extensions for pre- and post-release versions [17].

Version numbers in Rust’s Cargo are more sophisticated. Cargo allows packages
to contain named features, which can be used to enable conditional compilation and
enable otherwise disabled dependencies. For example, an image processing package
may contain the features “png” and “jpeg”. To model this, we might choose elements
of V to have the form (x, y, z, F), where F is a subset of the listed features for version
x.y.z.

Similarly, constraints (C ) may be enriched to contain necessary data to model the
package manager. In Cargo’s case, for example, constraints would be extended to
contain both version range constraints similar to Fig. 4.3a and a set of features that
are required to be enabled in the dependency. Based on how the sets of versions and
constraints have been chosen, the constraint satisfaction function (sat) needs to be
adapted to model the package manager.

NPM’s semantics for matching prerelease versions is subtle. A prerelease version can
only satisfy a constraint if a sub-term of the constraint with the same semver version
also has a prerelease. For example, consider the following constraint (spaces indicate a
conjunction):

>1.2.3-alpha.3 <1.5.2-alpha.8

As expected, both v1.2.3-alpha.7 and v1.5.2-alpha.6 satisfy the constraint, since
each is newer than 1.2.3-alpha.3 and older than 1.5.2-alpha.8. However, the version
v1.3.4-alpha.7 does not satisfy the constraint, because while it respects the ordering, it
is excluded as a non-explicitely mentioned prerelease version. This behavior prevents
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the unexpected outcome of Maven’s range constraints (Section 4.1.1). As part of our
implementation of MaxNPM (Chapter 5) we have encoded these semantics in PacSolve,
which works by having the sat function recursively check for constraint terms which
contain identical semver versions with prereleases.

The semantics of Cargo’s features requires a node in the solution graph to enable all
the features which dependents requested, and no more. Specifically, Cargo implements
a unification semantics, where the enabled features of a node N should be the union
of the requested features from all predecessors of N in the solution graph. These
semantics can be encoded in PacSolve by making use of both sat and minGoal. The sat
function checks that the enabled features are a superset of the requested features, and
the minGoal function would minimize at the highest priority the number of enabled
features, so that no extras are included.

4.3.2 Consistency and Cycles

NPM, PIP, and Cargo all make different choices of consistency semantics, at different
points along a spectrum of consistency strictness. PIP is the strictest of these three
package managers: it forbids installation of different versions of the same package. This
behavior is dictated by two factors. First, Python’s module system identifies modules
only by name, and if any two modules with the same name are in Python’s module
search path, one will always shadow the other. Second, at least when installing modules
into a single Python installation or virtual environment, two modules with the same
name will conflict on the filesystem.

Neither Rust nor JavaScript have Python’s single version restriction; they allow
installation of different versions of the same package. Node supports this because
packages (JavaScript source files) are laid out in a node_modules directory tree on disk.
Any directory in the tree can have its own local version of a dependency. Multi-
versioning is possible in Rust because Rust binaries are statically linked, and rely on
symbol rewriting to differentiate two instances of the same package. Cargo chooses to
restrict this to only allow versions to be co-installed if they are not semver-compatible.
So, under Cargo’s semantics, 1.3.5 and 2.1.4 can be co-installed, but 1.3.5 and 1.4.2

cannot be co-installed. In the most relaxed case, NPM allows any versions whatsoever
to be co-installed. All three of these consistency semantics can be encoded in PacSolve
as shown in Fig. 4.5.
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1 (define (npm-consistent v1 v2)

2 #true)

3

4 (define (pip-consistent v1 v2)

5 (equal? v1 v2))

6

7 (define (cargo-consistent v1 v2)

8 (match `(,v1 ,v2)

9 [`((0 0 ,z1) (0 0 ,z2)) #true]

10 [`((0 ,y ,z1) (0 ,y ,z2)) (= z1 z2)]

11 [`((0 ,y1 ,z1) (0 ,y2 ,z2)) #true]

12 [`((x ,y1 ,z1) (x ,y2 ,z2)) (and (= y1 y2) (= z1 z2))]

13 [_ #true]))

Figure 4.5: Examples of three different consistency functions

In addition, the dependency solvers exhibit different semantics with regards to cycles:
NPM and PIP allow for cyclic solution graphs, but Cargo forces all solution graphs to
be acyclic.

4.3.3 Properties of Dependency Solvers

We have sketched the main differences between PIP, NPM, and Cargo, and shown how
these differences can be encoded in PacSolve. We now ask the question: what are
some properties that all dependency solvers should satisfy? We claim that the following
properties are desirable:

1. (Soundness) The solution graph should satisfy all constraints;

2. (Completeness) The dependency solver should find a solution if one exists; and

3. (Optimality) The dependency solver should produce the lowest cost solution.

PacSolve makes it possible to formally state these properties:

Definition 4.3.1 (Soundness). A dependency solver specified by F is sound if for all
possible package metadata (M) and all solutions that it produces (graphs G), we have
(F ,M, G) ∈ S .
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In our testing, all three of PIP, NPM and Cargo returned correct solution graphs,
for appropriate choices of PacSolve semantics as outlined above. Note that this is a
stronger property for dependency solvers with strict notions of consistency (PIP, Cargo),
and for dependency solvers which disallow cycles (Cargo). We conjecture that PIP,
NPM and Cargo all have sound dependency solvers.

unsoundness of maven and nuget However, not all dependency solvers are
sound. Maven and NuGet are like PIP, where each package must resolve to exactly one
version. Their version constraints are also similar (and simpler) than PIP, NPM, and
Cargo, so are easy to encode in PacSolve. However, they do not guarantee that their
solutions satisfy all package constraints. Instead, when version consistency conflicts
arise, they ignore all but the closest package constraints to the root. Thus Maven and
NuGet are unsound with respect to a standard encoding of constraint semantics into
PacSolve. An alternative encoding could define the sat to be the constant true function
(so all constraints are trivially satisfied), and then include cost terms in minGoal if
a constraint is not satisfied (effectively implementing soft constraints). Under this
encoding, it may be possible that Maven and NuGet are sound. Regardless, PacSolve
as a formal tool has helped to illuminate that constraints in Maven and NuGet work
fundamentally differently than in many other dependency solvers.

Definition 4.3.2 (Completeness). A dependency solver specified by F is complete if for
all M, if there exists a G where (F ,M, G) ∈ S , then the dependency solver produces
a solution G′ such that (F ,M, G′) ∈ S .

Note that in this definition the only relationship between G and G′ is that both
are satisfying solution graphs, as this defintion simply means that if some satisfying
dependency solution exists, then the solver is always capable of finding a solution, but
there may multiple satisfying solutions.

In our testing, PIP always managed to successfully return a solution graph, if a
solution graph exists according to PIP’s semantics. PIP backtracks upon finding either
conflicting nodes, or version constraints which cannot be satisfied by any package
versions. Enough backtracking will eventually find a solution, if one exists (even if
that solution is far from optimal, as explained below). We conjecture that PIP has a
complete dependency solver. However, NPM and Cargo demonstrate different ways in
how completeness can go wrong.
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incompleteness of npm NPM implements a non-backtracking dependency solver.
While NPM cannot fail due to conflicts among version nodes, failure may occur when
a version constraint cannot be satisfied by any possible version. In this case, NPM is
unable to backtrack, and gives up, whereas PIP or Cargo can attempt finding other
solutions. Consider a package A with two versions: Av1.0.0 which has no dependencies,
and Av2.0.0 which depends on exactly version Bv9.9.9. Furthermore, suppose that
Bv9.9.9 does not exist in the package repository. (This situation happens in practice.)
Now, suppose the root node then depends on any version of package A.

There exists a satisfying solution graph: the root node chooses Av1.0.0, which then
has no further dependencies. This is the solution that Cargo and PIP will find, after
they both attempt and backtrack away from Av2.0.0. However, NPM fails: it greedily
commits to Av2.0.0 and then fails to find Bv9.9.9.

incompleteness of cargo Unlike NPM, Cargo performs backtracking similarly
to PIP, so one might expect Cargo to have a complete solver. However, Cargo also
checks that the solution graph is acyclic, but does not backtrack when a cycle is found.
For example, suppose we have package A with two versions, and a package B with
one version, with the following dependencies: Av1.0.0 has no dependencies, Av2.0.0
depends on any version of B, and Bv1.0.0 depends on any version of A. Finally, the
root node depends on any version of A. There exists an acyclic solution: the root node
chooses Av1.0.0, which then has no further dependencies. However, in this situation
Cargo will find a cyclic solution first, recognize that it is cyclic, and fail with an error.

Definition 4.3.3 (Optimality). A dependency solver specified by F is optimal if for all
M, for any correct solution G that it produces given M, there does not exist a G′ with
(F ,M, G′) ∈ S where G′ has lower cost than G, that is, minGoal(G′) < minGoal(G).

The property of optimality depends on the specific choice of minimization criteria
(minGoal), in addition to the other choices of semantics. A common optimization
objective is to prefer newer versions of packages when possible, but NPM, PIP and
Cargo do not agree on what “newer” means: PIP and Cargo prefer numerically larger
version numbers, while NPM has a more complex strategy of preferring the temporally
most recently uploaded version and then falling back to largest version numbers. More
generally, a wide range of other optimization criteria are possible, as explained in
Section 4.2.3. NPM, PIP and Cargo all apply their preference for newer versions (for
their choice of newer) in a heuristic manner, guided by the order in which they explore
solution graphs. All of these package managers are not, in general, optimal.
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Table 4.1: Comparison of conjectured formal properties across package managers

Property PIP NPM Cargo Maven PacSolve
MaxNPM

(Chapter 5)

Soundness ✓ ✓ ✓ ✗ ✓ ✓
Completeness ✓ ✗ ✗ n/a3 ✓ ✓2

Optimality ✗ ✗ ✗ n/a3 ✓ ✓2

Linking Soundness ✓ ✓ ✓ ✓ n/a ✓
Linking Isomorphism ✗ ✗1 ✓ ✗ n/a ✓
1 Using NPM’s default installation strategy (hoisted). The underlying Node

module system supports linking isomorphism, which other JavaScript package
managers (e.g. pnpm) and NPM in other configurations leverage.

2 Up to implementing out-of-scope NPM features
3 Our completeness and optimality definitions do not naturally apply when a

solver lacks soundness.

4.3.4 Semantics of Dependency Solvers in Relation to Semantics of Module Systems

Dependency solvers do not operate as fully independent pieces of software. Rather,
the dependency solutions they build are to be consumed by other software: in the
case of programming language package managers, the solutions are consumed by the
build system or language runtime. While a detailed account of the semantics of module
systems [45, 57] is beyond the scope of this work, we do aim to give a brief idea of how
to connect the semantics of dependency solvers with those of module systems, and
what properties might be expected to hold.

In the PacSolve semantics, a solution graph ⟨NR, DR⟩ is an internal artifact of the
dependency solver, and to be usable must be arranged into some data structure that is
understood by the relevant module system. For example, NPM builds an in-memory
dependency solution, but then must write to disk a node_modules/ directory tree in
a format understood by the Node runtime. Once the module system can load the
dependency solution, the module system is then responsible for resolving imports, that
is, deciding which module a given module name refers to. Here, we do not model all
the intricacies of module systems that may happen within a package (nested modules,
access modifiers, etc.), but only model the top-level modules defined by the dependency
graph, and the importability relation between them.
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We model how a module system behaves at resolving imports, given a solution
graph G = ⟨NR, DR⟩, via a relation Imports⟨NR,DR⟩ between solved dependencies (and
the root), and other solved dependencies, which is parameterized by the solution
graph. Specifically, we define, for all x ∈ NR ∪ {root} and (p, v) ∈ NR, that ⟨x, (p, v)⟩ ∈
Imports⟨NR,DR⟩ iff code in the package (or root) x is able to import definitions contained
in solved dependency (p, v). We do not define the name through which the import is
resolved, as many systems (such as PIP/Python and Cabal/Haskell), allow module
names to be different from package names. The pair ⟨x, (p, v)⟩ ̸∈ Imports⟨NR,DR⟩ exactly
when (p, v) can not be imported within the context of x.

Equivalently, we may view this as a directed graph, where nodes are solution graph
nodes (and root) and edges exist when one solved dependency can import another
(x → (p, v)). Throughout the rest of this discussion we call this the induced import graph.
Additionally, note that this construction allows there to be multiple outgoing edges
from x to different versions of the same package (e.g. (p, v1) and (p, v2)), indicating
that x is able to import multiple versions of the same package. While this may seem
strange, it is in fact necessary to fully model the capabilities of some package managers,
such as Cargo and NPM, which enable a programmer to specify aliased dependency
names and then import different versions of the same package. Again, it is outside the
scope of these semantics to describe how the module system decides which version to
import, just that they are importable in some way.

It is important to remark that the induced import graph models more than just the
semantics of the module system in isolation; it is also modeling the translation between
the solver’s solution graph and the data structure understood by the module system.
Finally, it says nothing about what actually occurs at runtime: just because there is an
edge x → (p, v) does not mean that x actually performs that import, or that the import
wouldn’t fail for other reasons (e.g. circular imports), just that the module system can
resolve the import to (p, v).

We can now describe two key properties regarding this interplay between the behavior
of the dependency solver and the module system:

Definition 4.3.4 (Linking Soundness). A dependency solver and a module system link
soundly if all solutions that the solver produces (graphs G = ⟨NR, DR⟩) are a spanning
subgraph of its induced import graph.

Linking soundness is a property that any practical package manager should support,
as it merely states that if the dependency solver produces an edge between dependencies
x and y, then in fact y is importable from x. As a practical example, consider an NPM
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package p which depends on three other packages, a, b and c, all of which have
no dependencies themselves. The dependency solution graph that the NPM solver
produces is a tree, with p as the root of the tree and (concrete versions of) a, b and c
as children. However, due to how the Node runtime resolves imports, not only can p
import a, b and c, but any of a, b and c can import another. The induced import graph
looks like a fully connected graph between a, b and c, paired with the node p which
has edges to the other three nodes. Here we can see that the tree-shaped solution graph
is a spanning subgraph of the induced import graph, which means that if there is an
edge between nodes within the dependency solver representation, then there must be
an importable relationship between those nodes (and in the case of NPM, extra edges
too). Linking isomorphism (below) is a strong property which excludes extra edges.

When combined with dependency solver soundness (Definition 4.3.1), linking sound-
ness yields the important property that when a programmer specifies a constraint on
a dependency, they will be guaranteed to be able to import that dependency with a
version satisfying their constraint (unless solving fails). In our testing, all three of PIP,
NPM and Cargo exhibited the conjunction of soundness and linking soundness, and
we conjecture that all three package managers are both sound and linking sound with
their respective language module systems.

However, linking soundness allows there to be additional edges in the induced
import graph which do not exist in the solution graph (G). Our next definition of linking
isomorphism captures this:

Definition 4.3.5 (Linking Isomorphism). A dependency solver and a module system
link isomorphically if all solutions that the solver produces (graphs G = ⟨NR, DR⟩) are
identical to the induced import graph, that is, the identity function id : NR → NR is a
graph isomorphism between G and the induced import graph.

Linking isomorphism is a stronger property than linking soundness, and states that a
solved dependency y is importable from x if and only if the dependency solver produces
an edge between x and y. When composing this property with solver soundness, this
yields the property (assuming solving succeeds) that a programmer can import a
dependency if and only if they explicitly specified that dependency (and that they will
receive a correct version).

Among our testing of PIP, NPM and Cargo, the only package manager to display
the linking isomorphism property is Cargo. When performing solves, Cargo records
not only which dependencies it selected, but also a directed acyclic graph structure
corresponding to our notion of induced import graphs. At build time, the build
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system component of Cargo reads this data structure to invoke the Rust compiler with
arguments allowing it to import precisely the declared dependencies for a particular
package.

non-isomorphic linking in pip and npm Both PIP and NPM link soundly
but non-isomorphically with the Python and Node runtimes, respectively. That is,
programmers can write import statements that successfully import other packages,
despite not declaring those packages as dependencies. Similarly to Cargo, NPM builds
a detailed dependency tree structure both in-memory and on disk, keeping track of
the dependencies of each package. However, NPM then performs an operation known
as hoisting, which attempts to move all nodes up to the root of the tree as long as
there is no conflict between multiple versions of the same package. When a package
is moved to the root of the tree, it becomes importable by any other module. This
property of NPM allows subtle dependency specification bugs to be introduced into
programs, as programmers may accidentally start using transitive dependencies which
are importable (and even autocompleted!) but are not specified in their package.json,
and as such may be removed at any time. Non-isomorphic linking essentially prevents
information hiding of dependency management decisions. One of the motivations
of the pnpm package manager as a replacement for NPM was to make a different
design decision to not perform hoisting [85], and thus pnpm satisfies isomorphic linking
(which is born out by our manual testing). Additionally, NPM allows configuration of
its installation strategy into three other modes [18], two of which we suspect satisfy
isomorphic linking but we have not thoroughly tested. While the linking properties
are not applicable to executable PacSolve itself (since it is only a dependency solver),
when we build on PacSolve to implement MaxNPM in Chapter 5, we use a similar
design of pnpm and produce node_modules/ trees that are both compatible with Node
and (we believe) satisfy isomorphic linking.

Unlike NPM, PIP does not eschew isomorphic linking out of an apparent design
decision, but rather is forced to by the underlying data structure that the Python
module system reads. All Python modules from all installed packages are placed in the
global (per virtual environment) site-packages/ directory in a flat structure identified
by module name only. Any dependency graph structure must be forgotten, and only
a set model of the installed dependencies remains. This is only possible because PIP
disallows different versions of the same package (Section 4.3.2). From there, the only
reasonable import graph semantics that could be induced by the set are to allow
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any package to import any package. Indeed, PIP always produces a fully-connected
importability graph between all installed packages2.

In the context of programming languages PIP’s behavior may appear lacking, but
is reflective of language package managers having their historical roots in operating
system package managers, for which this global set semantics is standard (e.g. all
libraries are placed in /usr/lib, or a handful of other directories).

4.4 synthesizing solution graphs with pacsolve

Performing dependency solving in the face of potentially conflicting dependencies is
known to be NP-complete [27]. Some package managers use polynomial-time algo-
rithms by giving up on various properties, such as disregarding conflicts (NPM) and
eschewing completeness (NPM and PIP’s old solver [89]). Since the PacSolve model
includes a generalized notion of conflicts (consistent), we make use of SMT solvers to
implement PacSolve efficiently.

We implement PacSolve in Rosette [100], which is a solver-aided language that
facilitates building verification and synthesis tools for DSLs. In the PacSolve DSL, the
program is a solution graph. We implement a function that consumes a) package metadata,
b) a dependency solver specification (Fig. 4.2) and c) a solution graph, and then asserts
that the solution graph is correct. Since we use Rosette, with a little effort, we can feed
the predicate a solution graph sketch instead of a concrete solution graph. This allows
us to use Rosette to perform angelic execution [10] to synthesize a solution graph that
satisfies the correctness criteria. This section describes the synthesis procedure in more
detail, starting with how we build a sketch.

sketching solution graphs Before invoking the Rosette solver, we build a
sketch of a solution graph that has a node for every version of every package that is
reachable from the set of root dependencies. Every node in a sketch has the following
fields: a) a concrete name and version for the package that it represents (or the dis-
tinguished root node); b) a symbolic boolean included that indicates whether or not
the node is included in the solution graph; c) a symbolic natural number depth which
we use to enforce acyclic solutions when desired; d) a vector of concrete dependency

2 Actually, a more rigorous analysis would note that the structure is rather that of a pointed set and pointed
graph, with root being the distinguished element. The importability graph is a fully connected graph on
the set of installed packages but excluding root, along with an edge from root to every installed package
vertex.
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Figure 4.6: A sample solution graph sketch

package names; e) a vector of concrete version constraints for each dependency; and
f) a vector of symbolic resolved versions for each dependency.

Fig. 4.6 illustrates the solution graph sketch corresponding to the dependency solving
problem given in Fig. 4.1. The combination of concrete dependency names and symbolic
dependency versions can be seen as representing symbolic edges in two parts: a concrete
part which does not need to be solved for (solid arrows), and a symbolic part which
requires solving (dashed arrows). This representation shrinks the solution space of
graphs as outgoing edges can only point to nodes with the correct package name.

graph sketch solving We define three assertion functions that check correctness
criteria of a solution graph:

1. check-dependencies consumes a graph and a node, and asserts that if the node
is included, then all the dependencies of the node are a) included in the graph; and
b) consistent with the associated version constraints as judged by the constraint
interpretation function (sat). We run this assertion function on all nodes, and
additionally assert that the root node is included.

2. globally-consistent? consumes a graph and asserts that for all pairs of nodes
that are a) included in the graph, and b) have the same package name, their
package versions are allowed to be co-installed as given by the consistency
function (consistent).
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3. acyclic? consumes a graph and a node, and asserts that the depth of the node is
strictly less than the depth of all its dependencies. If an acyclic solution is desired,
we run this assertion function on all nodes, and assert that the root node has
depth zero.

We also use Rosette to execute the objective function (minGoal) on the graph sketch,
yielding a symbolic real-valued formula, and then instruct Rosette to minimize it when
concretizing the solution graph sketch. As a final step, to produce a solution graph, we
traverse the concretized solution graph sketch from the root node, and produce those
nodes that are marked included.

4.5 discussion

PacSolve is an expressive and powerful framework in which to formally describe the
semantics of a dependency solver. In our design of PacSolve, we aimed to model the
essential features and differences between many contemporary package managers, and
as shown later in Chapters 5 and 6, PacSolve can be used as an effective foundation
for building tools to support improved dependency optimization and repair across two
different package ecosystems (NPM and Pip).

Since the designs of package managers can vary so widely, it is worth taking a step
back to discuss the variety of features supporoted by some popular package managers.
We reflect on the usefulness of these features, and whether or not they can be encoded
in PacSolve.

4.5.1 Multiple Dependency Versions & Conflicts

As has already been discussed, some package managers, including NPM and Cargo,
allow for multiple versions of the same package to be installed within one dependency
solution. Additionally, both NPM and Cargo support dependency aliases, which allows
one package to depend on multiple versions of the same package. PacSolve directly
supports modeling these features.

Co-installation of multiple versions of a dependency has both upsides and downsides.
It makes the solver strictly more relaxed, in the sense that more solutions are admitted
under the semantics presented thus far, which practically means that programmers
will face unsatisfiable dependency constraints less often. More specifically, this design
allows programmers to incrementally upgrade dependencies: they may run into cases
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where they would like to upgrade a (direct) dependency, but that same dependency is
also transitively dependend on elsewhere in the graph in such a way that disallows the
upgrade. Multiple versions allows the programmer to simply upgrade only their copy
of the dependency, and leave the transitively dependency upon version in an old state.

While this allows for more flexibility in dependency management, there are a few
downsides. First, multiple versions of packages bloats code size. While NPM and
Cargo’s solving algorithms attempted to unify dependencies, they do not do so opti-
mally (Chapter 5), leading to increased code size in practice. Second, while program-
mers may not face unsatisfiable constraints up front, they are nevertheless subject to
bugs or other problems that can be caused by having multiple versions of a package
installed.

In Chapter 5 we use PacSolve to build a configurable replacement for NPM, and
observe how many of the top 1000 most downloaded packages on NPM have unsat-
isfiable dependencies if multiple dependency versions are disallowed. We find that
requiring multiple versions of a dependency is relatively rare (1.9% of the top 1000
packages), and thus suggest that this feature of NPM (and to a lesser degree Cargo)
may not be worth its considerable downsides. Additional work including programmer
surveys could be conducted to further examine its usefulenss.

A closely related topic is the notion of cross-package conflicts, which PacSolve does
not support, nor do language-specific package managers, to the best of our knowledge.
System package managers, in particular APT/dpkg do support this notion, in which a
developer of package foo may declare that foo conflicts (and thus cannot be co-installed
with) some other package bar. This feature may be both useful and reasonable for
operating system level package management, as it is important for system stability to
enforce that e.g. only one driver for a piece of hardware can be installed at once. At the
scale of a programming language repository however, allowing programmers to specify
arbitrary conflicts would harm composability and thus predicability of dependency
solving, without a clear need for this feature. Two disjoint solution subgraphs may be
simultaneously unsatisfiable, and it may be unclear to the programmer why that is the
case.

4.5.2 Dependency Overrides

Both NPM and Cargo allow for a programmer to override dependencies, in which a
package may forcefully select a different version for one of its transitive dependencies,
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even one that would not satisfy the original version constraint. While not intended to
be used frequently, this may be an important feature to enable programmers to update
transitive when a package in the middle did not specify a flexible version constraint,
particularly in crisis situations such as rapid responses to security vulnerabilities.

PacSolve does not spefically model dependency overrides, and in fact it is unclear
what a reasonable semantic model for dependency overrides should be. NPM and
Cargo vary widely in their design, each offering a different configuration language
to specify paths through the solution graph that should be overridden. Additionally,
it is unclear if overrides from the root package only should apply to the solution,
or overrides from any package in the solution: Cargo only considers root package
overrides, while NPM does not specify its behavior. More research could be done on
the design of dependency override systems, and what design serves a good balance of
solving practical problems faced by programmers and maintaining predictable solving
semantics.

4.5.3 Dependency Staging

One of the most notable features of many language package managers that PacSolve
does not explicitely model is a notion of stages of dependency solving, also called
scoped dependencies. Many package managers, including Maven, NPM, Cargo and
others allow programmers to, for example, specify dependencies for their tests, or
development environment, separately from runtime dependencies. For interpreted
languages such as NPM, this is not a barrier to using PacSolve in practice, as one can
easily produce a “test only” dependency subgraph, and solve that with PacSolve. By
convention, TypeScript source code is not submitted to the NPM ecosystem (compiled
JavaScript is), so resolving a dependency on the TypeScript compiler does not have to
be done first in order to install dependencies correctly.

However, the situation is more interesting when compilation or macro systems are
involved. Rust features a robust macro system, including procedural macros which are
arbitrary pieces of Rust code that operate on the Rust AST at compile time. Cargo must
first solve dependencies for any procedural macro binaries, then execute the procedural
macros to obtain the expanded source code and finally compile it. Importantly, any
dependencies that the procedural macro uses do not need to be included (i.e. linked)
at runtime of the final binary, only during runtime of the macro. However, it remains
unclear how dependency unification happens or should happen across stages, and
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exploring these details at the semantic level would require expanding the PacSolve
model.

4.5.4 Virtual Packages

As with cross-package conflicts, the APT/dpkg system package managers also support a
cross-package relationship of virtual packages, which allow multiple different packages
to provide a single named interface, and a consumer may depend on any packages
which provides that interface. While this may be useful for system level package
management (for example multiple competing awk implementations), the utility in
language level package management remains unclear. Certain use cases may exist, such
as multiple different database connector libraries, but it is unclear if there are sufficient
practical use cases to justify additional solver complexity to handle this feature.

Modeling virtual packages is possible but not practical in PacSolve: because package
names in dependencies are fixed (non-symbolic), in order to have the solver solve for
which concrete package should be selected, one would need to move the package name
into the (symbolic) version datatype, which would then allow it to be selected freely by
the solver. However, this would increase the size of the solution space and may perform
poorly without additional optimization work.

4.6 conclusion

We present PacSolve, a semantics of dependency solving that we use to highlight the
essential features and variation within the package manager design space. Next, we use
PacSolve to implement MaxNPM, a drop-in replacement for NPM that allows the user
to customize dependency solving with a variety of global objectives and consistency
criteria.



5
M A X N P M : F L E X I B L E A N D O P T I M A L D E P E N D E N C Y
M A N A G E M E N T F O R J AVA S C R I P T V I A PA C S O LV E

Package managers such as NPM (the de facto package manager for JavaScript) have
become essential for software development. For example, the NPM repository hosts
over two million packages and serves over 43 billion downloads weekly. The core of
a package manager is its dependency solver, and NPM’s solver tries to quickly find
dependencies that are recent and satisfy all version constraints. Unfortunately, NPM
uses a greedy algorithm that can duplicate dependencies and can even fail to find the
most recent versions of dependencies.

Moreover, the users of NPM may have other goals that NPM does not serve. a) Web
developers care about minimizing code size to reduce page load times. “Bundlers” such
as Webpack alter the packages selected by NPM to eliminate duplicates (Section 5.1.2).
b) Many developers want to avoid vulnerable dependencies and several tools detect
and update vulnerable dependencies, including NPM’s built-in “audit” command [73].
However, the audit command is also greedy and its fixes can introduce more severe
vulnerabilities (Section 5.1.1). c) Finally, there are semantic reasons why many packages,
such as frameworks with internal state, should never have multiple versions installed si-
multaneously. However, NPM’s approach to solving this, known as “peer dependencies”
is brittle and causes confusion (Section 5.1.3).

The problem with these approaches is that they are ad hoc attempts to customize and
workaround NPM’s solver. Bundlers and audit tools modify solved dependencies after
NPM produces its solution. Peer dependencies effectively disable the solver in certain
cases and rely on the developer to select unsolved dependencies at the package root. In
general, NPM cannot produce a “one-size-fits-all” solution that satisfies the variety of
goals that developers have. Moreover, any tool that modifies the solver’s solution after
solving risks introducing other problems and may not compose with other tools.

Our key insight is that all these problems can be framed as instances of a more general
problem: optimal dependency solving, where the choices of optimization objectives and
constraints determine which goals are prioritized. Due to the wide-ranging goals in the
NPM ecosystem, we argue that NPM should allow developers to customize and combine
several objectives. For example, a developer should be able to specify policies such as

59
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“dependencies must not have any critical vulnerabilities”, “packages should not be
duplicated”, and combine these with the basic objective of “select the latest package
versions that satisfy all constraints.” To make this possible and evaluate its effectiveness,
we present MaxNPM: a complete, drop-in replacement for NPM, which empowers
developers to combine multiple objectives. The heart of MaxNPM is a dependency
solver for NPM built using PacSolve (Chapter 4).

We use MaxNPM to conduct an empirical evaluation with a large dataset of widely-
used packages from the NPM repository. Our evaluation shows that MaxNPM outper-
forms NPM in several ways:

1. chooses newer dependencies compared to using NPM for 14% of packages with
at least one dependency.

2. shrinks the footprint of 21% of packages with at least one dependency.

3. reduces the number or severity of security vulnerabilities in 33% of packages with
at least one dependency.

Overall, MaxNPM takes just 2.6s longer than NPM on average, though encounters
some outliers which solve significantly more slowly with MaxNPM, which is reflected
in the standard deviation of the slowdown (13.7s).

5.1 background on working with npm

NPM is the most widely used package manager for JavaScript. NPM is co-designed
with Node, which is a popular JavaScript runtime for desktop and server applications.
However, NPM is also widely used to manage web applications’ dependencies, using
“bundlers” like Webpack to build programs for the browser.

As discussed in Chapter 4, an unusual feature of NPM is that it may select multiple
versions of the same package. Unfortunately, NPM’s behavior is not always desirable,
and can lead to increased code size and subtle runtime bugs. Moreover, NPM does not
guarantee that packages are only duplicated when strictly necessary.

5.1.1 Avoiding Vulnerable Dependencies

NPM’s built-in tool npm audit checks for vulnerable dependencies by querying the
GitHub Advisory Database. The tool can also fix vulnerabilities by upgrading dependen-
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cies without violating version constraints.1 However, the tool has several shortcomings.
a) Each run only tries to fix a single vulnerability. b) It only upgrades vulnerable
dependencies, even if a vulnerability-free downgrade is available that respects version
constraints. c) It does not prioritize fixes by vulnerability scores (CVSS), even though
they are available in the GitHub Advisory Database. d) It does not make severity-based
compromises. For example, a fix may introduce new vulnerabilities that are more severe
than the original.

5.1.2 Minimizing Code Bloat

A “bundler”, such as Webpack, Browserify, or Parcel, is a tool that works in concert with
NPM to manage the dependencies of front-end web applications. The primary task of a
bundler is to package all dependencies to be loaded over the web, instead of the local
filesystem. However, bundlers do more, including work to minimize page load times. A
simple way to minimize page load times is to reduce code size. Unfortunately, NPM’s
willingness to duplicate packages can lead to increased code size [91]. Contemporary
bundlers employ a variety of techniques from minification to unifying individual files
with identical contents. However, these techniques are not always sound and have been
known to break widely-used front-end frameworks [71, 103].

5.1.3 Managing Stateful Dependencies

NPM’s ability to select several versions of the same dependency is also unhelpful when
using certain stateful frameworks. For example, React is a popular web framework
that relies on internal global state to schedule view updates. If a program depends on
two packages that transitively depend on two different versions of React, it is likely to
encounter runtime errors or silent failures. The only way to avoid this problem is if all
package authors are careful to mark their dependency on React as a peer dependency:
a dependency that is installed by some other package in a project. However, there is
no easy way to determine that all third-party dependencies use peer dependencies
correctly. It can also be hard to determine before hand that a package will never be
used as a dependency and thus should not use peer dependencies.

1 The --force flag breaks constraints and potentially breaks the program.
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5.2 the interface of maxnpm

The goal of MaxNPM is to help developers address the broad range of problems
described above. MaxNPM serves as a drop-in replacement for the default npm install

command. The user can run npm install --maxnpm to use MaxNPM’s customizable
dependency solver instead. There are two broad ways to customize MaxNPM. First,
MaxNPM allows the user to specify a prioritized list of objectives with the -minimize

flag. Out of the box, MaxNPM supports the following objectives (defined precisely in
Fig. 4.4):

• min_oldness: minimizes the number and severity of installed old versions;

• min_num_deps: minimizes the number of installed dependencies;

• min_duplicates: minimizes the number of co-installed different versions of the
same package; and

• min_cve: minimizes the number and severity of known vulnerabilities.

Second, MaxNPM allows the user to customize how multiple package versions are
handled with the -consistency flag:

• npm: the default behavior of NPM, which allows several versions of a package to
co-exist in a single project; and

• no-dups: require every package to have only one version installed.

With some work, the user can even define new objectives and consistency criteria.
For example, a developer building a front-end web application may want to reduce

code size and select recent package versions. They could use MaxNPM as follows:

1 npm install --maxnpm --consistency no-dups

2 --minimize min_oldness,min_num_deps

This command avoids duplicating dependencies, and minimizes oldness and the
number of dependencies in that order. This is a more principled approach to reducing
code size than the ad hoc de-duplication techniques used by bundlers. Moreover, we
show that this command is frequently successful at reducing code size (Section 5.4.1.3).

As a second example, consider a developer building a web application backend,
where they are very concerned about security vulnerabilities. They could use MaxNPM
as follows:
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1 npm install --maxnpm --minimize min_cve,min_oldness

This command subsumes npm audit fix and we show that it is substantially more
effective (Section 5.4.1.1).

5.3 building maxnpm using pacsolve

MaxNPM is a package manager for JavaScript built on PacSolve, which is a DSL for
describing dependency solvers. To use PacSolve to implement a fully-fledged package
manager, there are three main components to develop: a) Concrete choices of semantic
properties, b) a procedure for building PacSolve queries based on dependencies and
the package ecosystem, and c) a procedure to decode a PacSolve result into the correct
structure on disk which is loadable by the module system (in this case, the Node
runtime). We walk through these components in the case of MaxNPM.

setting concrete semantics The concrete semantics that are specified in a Pac-
Solve query are a declarative specification of the dependency solver’s behavior. While
PacSolve makes it easier to get these correct compared to an ad-hoc implementation,
one must define them carefully. When using PacSolve to build a package manager to
interoperate with an existing package manager (in the case of MaxNPM and NPM), the
existing package manager’s semantics provide some formal guidance on how to choose
the semantics. Specifically, the constraint satisfaction semantics (sat) of the new package
manager should align with the old package manager, though the domain of versions
and constraints need not be the same between the two. If we assume the old package
manager (not implemented, but modeled with PacSolve) has a domain of versions
(Vold), constraints (Cold), and satisfaction predicate (satold : Cold → Vold → Bool), then
the new package manager must know how to translate versions and constraints into its
choice of new domains (encv : Vold → V and encc : Cold → C ), and define the semantics
of constraint satisfaction (sat : C → V → Bool) such that satisfaction in one package
manager is equivalent to satisfaction in the other:

∀vold ∈ Vold, ∀cold ∈ Cold, satold(cold, vold) ⇐⇒ sat(encc(cold), encv(vold))

The motivation to choose new version and constraint domains to be different from
old domains is to encode version and constraint information in datatypes that are
solvable or more efficiently solvable by the PacSolve implementation. For example,



64 maxnpm : flexible and optimal dependency management for javascript via pacsolve

in NPM’s implementation, versions are a 4-tuple N × N × N × String, where the last
component is the prerelease string (e.g. alpha-3). In the MaxNPM implementation we
encode this to be a natural number induced by the lexicographic ordering of prerelease
strings within a single PacSolve query, and likewise for prerelease strings contained
inside constraints. This ensures that prerelease ordering will be translated to Z3’s
theory of bitvectors, and we can use the above reasoning to check that this translation
is correct.

preparing queries MaxNPM must decide at runtime what set of packages (N ) to
include in the PacSolve query. For the solver to be complete and optimal (Section 4.3.3),
MaxNPM must include enough nodes in N such that if there exists a solution, then an
optimal solution can be found using only the nodes in N . A sound algorithm for this is
a graph traversal starting at the root node, and moving from node x to node y = (p′, v)
if for any (p, c) ∈ deps(x), p = p′ and sat(c, v) is true. Any potentially useful node for
the solve will be visited by the graph traversal. It can easily be seen that any correct
and optimal solution graph would be a subgraph of the graph traversal. This query
preparation is agnostic to the specific package manager, and would be applicable to
other package managers targeting PacSolve.

decoding the result PacSolve will return a directed multigraph as a solution
back to the package manager when solving is complete. As a final step, the package
manager must take the PacSolve solution graph and perform the actual package
downloading and installation steps in order to place everything on disk in a format
understood by the target language runtime (in this case, the Node runtime). As dis-
cussed in Section 4.3.4, there are interesting design decisions in this space, and at the
time of this writing NPM even supports four distinct configurable modes for how it
links dependency solutions with the Node runtime [18]. In MaxNPM, we elected to
make the design decision of nesting dependencies within the corresponding parent’s
node_modules/ directory, and using symlinks as necessary for shared dependencies.
Unlike NPM (in the standard configuration), this design achieves isomorphic linking
(Section 4.3.4), ensuring that a package can only import a dependency if it declares it
explicitly.
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5.4 evaluation

We evaluate MaxNPM in several scenarios, determining whether its support for flexible
optimization objectives can provide tangible benefits to developers as compared to NPM.
We gather two large datasets of popular packages, and also investigate if MaxNPM is
sufficiently reliable and performant to use as a drop-in replacement for NPM. In this
section we use MaxNPM to answer each of our research questions:

RQ1: Can MaxNPM find better solutions than NPM when given different optimization
objectives?

RQ2: Do MaxNPM’s solutions pass existing test suites?

RQ3: Does MaxNPM successfully solve packages that NPM solves?

RQ4: Does using MaxNPM substantially increase solving time?

We build two datasets of NPM packages. Top-1000 is a set of the latest versions of the
top 1,000 most-downloaded packages as of August 2021. Including their dependencies,
there are 1,147 packages in this set. Unsurprisingly, these packages are maintained and
have few known vulnerabilities. Therefore, to evaluate vulnerability mitigation, we
build the Vuln-715 dataset of 715 packages with high CVSS scores as follows: a) we filter
the Top-1000 to only include packages with available GitHub repositories; b) we extract
every revision of package.json; c) for each revision, we calculate the aggregate CVSS
score of their direct dependencies, as determined by the GitHub Advisory Database;
and d) we select the highest scoring revision of each package.

MaxNPM is built on NPM 7.20.1. PacSolve uses Racket 8.2, Rosette commit 1d042d1,
and Z3 commit 05ec77c. We configure NPM to not run post-install scripts and not
install optional dependencies. We run our performance benchmarks on Linux, with a
16-Core AMD EPYC 7282 CPU with 64 GB RAM. We warm the NPM local package
cache before measuring running times.
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Figure 5.1: Comparing NPM’s to MaxNPM’s solution quality. These plots ignore failures in
both solvers and have MaxNPM configured to use NPM-style consistency and allow
cycles.
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5.4.1 RQ1: Can MaxNPM find better solutions than NPM when given different optimization
objectives?

5.4.1.1 Can MaxNPM help avoid vulnerable dependencies?

We configure MaxNPM to minimize the aggregate CVSS scores of all dependencies,2

and compare with the built-in npm audit fix tool (Section 5.1.1). We use the Vuln-715
packages for this comparison. Both tools run successfully on 472 packages: the failures
occur because these are typically older versions that do not successfully install.

The histogram in Fig. 5.1a reports the difference in aggregate CVSS score between npm

audit fix and MaxNPM. A higher score indicates that a package has fewer vulnerabil-
ities with MaxNPM. MaxNPM produces fewer vulnerabilities on 235 packages (33%).
There is one package where MaxNPM produces a lower score; we are investigating this
as a possible bug. The mean CVSS improvement by MaxNPM is 14.75 CVSS points
(a “maximum severity” vulnerability is 10 points), or by 30.51%. The improvement
is statistically significant (p < 2.2 × 10−16) using a paired Wilcoxon signed rank test,
with a medium Cohen’s d effect size of d = 0.46. Thus, we find that MaxNPM is
substantially more effective than npm audit fix at removing vulnerable dependencies.

An example project where MaxNPM eliminates vulnerabilities is the babel compiler
(34 million weekly downloads). Commit 5b09114b8 is in Vuln-715, and MaxNPM
eliminates all vulnerabilities; whereas npm audit fix leaves several with an aggregate
CVSS score of 59.4.

5.4.1.2 Can MaxNPM find newer packages than NPM?

MaxNPM ought to be able to find newer packages than NPM’s greedy algorithm. We
define the oldness of a dependency on a package version (old(p, v)) as a function that
assigns the newest version the value 0, the oldest version the value 1, and other versions
on a linear scale in between. We define the mean oldness of project as the mean oldness
of all dependencies in a project,including transitive dependencies. Note that this metric
is not identical to the minimization objective of MaxNPM, which calculates the sum
and ignores duplicates. The metric is more natural to interpret, whereas the objective
function avoids pathological solutions.

Figure 5.1b shows a point for every package in the Top-1000, with mean oldness
using NPM and MaxNPM as its x and y coordinates. Points on y = x are packages

2 The min_cve,min_oldness flags.
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whose dependencies are just as old with both NPM and MaxNPM. 14% of packages
excluding those with zero dependencies are better with MaxNPM, while 5% are worse.
On average oldness improved by 2.62%. The improvement is statistically significant
(p = 4.27 × 10−6) using a paired Wilcoxon signed rank test, with a small Cohen’s d
effect size of d = 0.024. Thus MaxNPM produces newer dependencies on average.

An example of successful oldness minimization is the class-utils package (15
million weekly downloads). MaxNPM chooses a slightly older version of a direct
dependency, which allows it to chose much newer versions of transitive dependencies.

One might wonder why MaxNPM does worse in 5% of cases, since MaxNPM should
be optimal. Manual investigation of these cases shows that some packages make use of
features which we have not implemented in MaxNPM, such as URLs to tarballs rather
named dependencies. MaxNPM is unable to explore that region of the search space.
Implementing these features would take some engineering effort, but wouldn’t require
changes to the model.

5.4.1.3 Can MaxNPM reduce code bloat?

Instead of using ad hoc and potentially unsound techniques to reduce code bloat, we
can configure MaxNPM to minimize the total number of dependencies. On the Top-1000
packages, we configure MaxNPM in two ways: 1) prioritize fewer dependencies over
lower oldness; and 2) prioritize lower oldness over fewer dependencies. Figure 5.1c
plots an ECDF (empirical cumulative distribution function) plot where the x-axis shows
the shrinkage in dependencies compared to NPM, and the y-axis shows the cumulative
percentage of packages with that amount of shrinkage. The plot excludes packages
with zero dependencies, and x = 1 indicates no shrinkage (when MaxNPM produces
just as many dependencies as NPM).

Both configurations produce fewer dependencies than NPM, but prioritizing fewer
dependencies is the most effective (the red line). For about 21% of packages, MaxNPM
is able to reduce the number of dependencies, with an average reduction in the number
of packages of 4.37%. The improvement is statistically significant (p < 2.2 × 10−16)
using a paired Wilcoxon signed rank test, with a moderate Cohen’s d effect size of
d = 0.20. For the same set of packages, the total disk space required shrinks significantly
(Fig. 5.1d). With MaxNPM, a quarter of the packages require 82% of their original
disk space. Even when we prioritize lowering oldness, MaxNPM still produces fewer
dependencies (the blue line).
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An example of dependency size minimization is the assert package (13 million
weekly downloads). For 3 direct dependencies, MaxNPM chooses slightly older revi-
sions (with the same major and minor version). But this eliminates 33 of 43 transitive
dependencies.

We have observed that in a few cases NPM exhibits a bug in which it installs
additional dependencies that are not defined in the set of production dependencies of
the package, nor in the set defined by transitive dependencies3. However, MaxNPM
does not exhibit this bug. We will work on reporting this bug, but we believe this an
example of the advantage of PacSolve’s declarative style of building package managers.

5.4.1.4 Can MaxNPM address duplicated packages?

Minimization Objectives Failures

Solver Consistency Allow cycles? Primary Secondary Successes Unsat Timeout Other

NPM 953 0 0 47

MaxNPM npm Yes Oldness #deps 972 0 27 1

MaxNPM npm Yes #deps Oldness 972 0 27 1

MaxNPM npm Yes Oldness Duplicate 973 0 26 1

MaxNPM no-dups Yes Oldness #deps 926 19 54 1

MaxNPM npm No Oldness #deps 972 0 27 1

MaxNPM no-dups No Oldness #deps 926 19 54 1

Table 5.1: Failures that occur when running NPM and different configurations of MaxNPM on
the Top-1000 dataset.

NPM happily allows a program to load several versions of the same package, which
can lead to subtle bugs (Section 5.1.3). To address this problem, a developer can
configure MaxNPM to disallow duplicates. In this configuration, 19 packages (1.9%) in
Top-1000 produce unsatisfiable constraints, which indicates that they require several
versions of some package (Table 5.1).

For example, terser@5.9.0 is a widely used JavaScript parser that that directly
depends on source-map@0.7.x and source-map-support@0.5.y. However, the latter de-
pends on source-map@0.6.z, thus the build must include both versions of source-map.
The ideal fix would update source-map-support to support source-map@0.7.x.

3 @babel/plugin-proposal-export-namespace-from is an example.
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Figure 5.2: Results of running tests after solving dependencies with NPM and MaxNPM. In
total only 5% of packages have a failing test with MaxNPM but not with NPM.

5.4.2 RQ2: Do MaxNPM’s solutions pass existing test suites?

Statistic NPM Pass & NPM Pass &

MaxNPM Pass MaxNPM Fail

Mean 489.36 58.90

STD 4699.01 266.87

Minimum 0.00 0.00

25th Perc. 0.00 1.50

50th Perc. 7.00 4.00

75th Perc. 39.00 10.50

Maximum 81582.00 1493.00

Table 5.2: Statistics of the number of executed tests per package in the top left and top right
groups of Fig. 5.2.

Although a package should pass its test suite with any set of dependencies that
satisfy all constraints, in practice tests may fail with alternate solutions due to under-
constrained dependencies. We identified test suites for 735 of the Top-1000 packages.
A test suite succeeds only if all tests pass. All test suites succeed with both MaxNPM
and NPM on 77% of packages, and fail for both on 17%. There are 38 packages where
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MaxNPM fails but NPM passes, and 7 packages where NPM fails and MaxNPM
succeeds (Figure 5.2).

Test failures occurring slightly more often with MaxNPM’s solutions are likely due
to the fact that many of these packages have already been solved and tested with
NPM, so even if their dependencies are underconstrained, at present NPM produces
working solutions. Manual investigation suggests that the 7 packages that fail with
NPM but succeed with MaxNPM are likely due to flaky tests and missing development
dependencies while the 38 packages that fail with MaxNPM but succeed with NPM
are due to those reasons in addition to under-constrained dependencies.

Finally, to verify that packages which pass their tests with MaxNPM are not doing
so vacuously due to no or few tests, in Table 5.2 we report statistics of the number of
executed tests for packages in the group that pass with NPM and MaxNPM, and in the
group that pass with NPM and fail with MaxNPM. A two-sided Mann-Whitney U test
indicates that there is no statistically significant difference between the two populations
(p = 0.49).

5.4.3 RQ3: Does MaxNPM successfully solve packages that NPM solves?

The rightmost three columns of Table 5.1 show the number of failures resolving
dependencies on the Top-1000 for NPM, along with each configuration of MaxNPM
that we evaluated. On the Top-1000 packages, NPM itself fails on 47 packages. Many of
these failures occur due to broken, optional peer-dependencies that MaxNPM does not
needlessly solve.4 We run MaxNPM in several configurations, and get 26—28 failures
when duplicate versions are permitted. Some failures occur across all configurations, e.g.,
one package requires macOS. Most of our other failures are timeouts: we terminate
Z3 after 10 minutes. When duplicates are not permitted, we do get more failures due
to unsatisfiable constraints, but these are expected (Section 5.4.1.4). Some users may
prefer to have MaxNPM fail when it cannot find a solution rather than falling back to
an unconstrained solution, as the latter may lead to subtle and hard-to-debug issues
at runtime due to e.g. conflicting global variables in multiple versions of the same
package. When we permit duplicates like NPM, we find that MaxNPM successfully
builds more packages than NPM itself, providing strong evidence that MaxNPM can
reliably be used as a drop-in replacement for NPM.

4 They are not necessary to build, but NPM attempts to solve for them even with the --omit-peer flag.
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Figure 5.3: ECDF of the additional time taken by MaxNPM to solve and install packages
compared to NPM, ignoring timeouts and failures, with outliers (> 20s) excluded.
The outliers take up to 329s extra seconds, but the mean and median slowdowns
are only 2.6s and 1.6s, respectively. In this experiment MaxNPM was configured
with NPM-style consistency, allowing cycles, and minimizing oldness first and then
number of dependencies.

5.4.4 RQ4: Does using MaxNPM substantially increase solving time?

On the Top-1000 packages, we calculate how much additional time MaxNPM takes to
solve dependencies over NPM. We observe that the minimum slowdown is −2.3s (when
MaxNPM is faster than NPM), the 1st quartile is 0.8s, the median is 1.6s, the mean
is 2.6s, the 3rd quartile is 2.2s, the max is 329s, and the standard deviation of the
slowdown is 13.7s. These absolute slowdowns are on top of the baseline of NPM, which
takes 1.52s on average, and 1.34s at the median. We exclude timeouts from this analysis,
we report those in Table 5.1. As evidenced by the maximum and standard deviation,
there are a few outliers where MaxNPM takes substantially longer. We also perform a
paired Wilcoxon signed rank test and find that the slowdown is statistically significant
(p < 2.2× 10−16), with a moderate Cohen’s d effect size of d = 0.27. Figure 5.3 shows an
ECDF of the absolute slowdown, but with outliers (> 20s) removed. We conclude that
while MaxNPM does increase solving time, the increase is modest in the majority of
cases, but there are a few outliers. This performance characteristic mirrors that of other
SAT-solver based package managers, including production ones such as Conda [19].
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Excluding outliers, a significant portion of the overhead is serializing data between
JavaScript (MaxNPM) and Racket (PacSolve), which could be improved by building the
solver in JavaScript or using a more efficient serialization protocol. As for the outliers,
one could implement a tool that first tries MaxNPM but reverts to greedy solving after
a timeout, at the expense of optimality.

5.5 discussion

By modeling NPM in PacSolve and comparing their real-life behavior, we gained
valuable insight into NPM’s behavior. As already explored empirically in Section 5.4,
NPM is non-optimal, and it is challenging to see how it could be optimal without
implementing a full solver based approach such as MaxNPM. However, NPM does
have some lower-hanging fruit that is easier to achieve and would benefit users. First,
as explored theoretically in Section 4.3 and empirically in Section 5.4 NPM is not in fact
complete, in that there are situations where a satisfying solution exists, but NPM fails
to find it. Most commonly, a version of a package depends on a dependency which
does not exist, and NPM immediately bails out rather than backtracking. This could
be implemented with simple backtracking without harming the performance of solves
which currently succeed. In addition, Section 5.1.1 identifies several shortcoming of the
npm audit fix tool at the time of our testing. We would suggest incorporating severity
of vulnerabilities into the update logic, so that the tool can decide trade-offs between
different vulnerabilities. The tool is also unable to downgrade dependencies to remove
vulnerabilities, which would be a useful option to have, even if not enabled by default.

5.6 threats to validity

external validity The projects that we used in our evaluation may not be repre-
sentative of the entire ecosystem of NPM packages. We select the 1,000 most popular
projects, and report performance as a distribution over this entire dataset, including a
discussion of outliers. Given the number of projects that we used in our evaluation and
their popularity, we believe that MaxNPM is quite likely to be helpful for improving
package management in real-world scenarios. We describe PacSolve as a unifying
framework for implementing dependency solvers, however we only use PacSolve to
implement MaxNPM. Future work should empirically validate PacSolve’s efficacy in
other ecosystems.
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internal validity MaxNPM, PacSolve, and the tools that we build upon may
have bugs that impact our results. To verify that differences between NPM and
MaxNPM are not due to bugs in MaxNPM, we carefully analyzed the cases where
MaxNPM and NPM diverged in their solution, and we walkthrough some example
cases in Section 5.4. Additionally, we have carefully written a suite of unit tests for
PacSolve.

construct validity We evaluate MaxNPM’s relative performance to NPM when
optimizing for several different objective criteria. However, it is possible that these
criteria are not meaningful to developers. For example, when comparing MaxNPM
and npm audit fix in reducing vulnerabilities, we use the aggregate vulnerability
scores (CVSS) to rank the tools. However, in practice, these scores may not directly
capture the true severity of a vulnerable dependency in the context of a particular
application. MaxNPM does however allow for potential customization of constraints to
fit the developer’s needs. Future work should involve user studies, observing the direct
impact of PacSolve-based solvers (including MaxNPM, and implementations for other
ecosystems) on developers.

5.7 data availability

Our artifact is available under a CC-BY-4.0 license [83] and consists of a) the imple-
mentations of PacSolve and MaxNPM, b) the Top-1000 and Vuln-715 datasets, and
c) scripts to reproduce our results. All of our code is also available on GitHub [81], and
MaxNPM can be easily installed with npm install -g maxnpm.



6
R E P Y R O : AU T O M AT E D D E P E N D E N C Y R E PA I R T H R O U G H
C O N S T R A I N T M U TAT I O N

Unfortunately, dependency solutions do not always work as intended, which may
cause any number of software failures including build failures, linting failures, runtime
crashes, runtime bugs, performance bugs, etc. Generally, this happens due to dependency
drift with older software, where at the time of writing the dependency constraints
produced a solution that worked correctly, but as new versions of dependencies were
published these same constraints produced different solutions.

Programmers who now wish to use this older code face the challenge of debugging
the dependency constraints. Generally, this consists of two subtasks: a) determining
which dependencies are the root causes of the failures, and b) how to modify the
constraints of bad dependencies to fix the failures. Along the way, programmers
encounter other challenges, including hidden effects (changing one dependency version
also changes many others) and unsatisfiable constraints (requiring backtracking on
constraint modification decisions). Repairing dependencies is a difficult and time-
consuming task.

In this chapter we propose Repyro, an automated Python dependency repair frame-
work based on PacSolve that allows large-language models (LLMs) to be used to
suggest fixes to PacSolve constraints, while PacSolve optimization objectives are used
to prioritize more relevant solutions. Repyro extends the flexibility of PacSolve by
allowing these different components to be flexibly enabled, disabled, and configured.
We then conduct an extensive empirical evalution by using Repyro to perform depen-
dency repair on datasets of Python Gists [46] and Python Jupyter notebooks [79], and
perform an ablation study to understand what effects the components of Repyro have
on dependency repair, both separately and when working in concert.

Our results suggest promising directions in the field of automated dependency repair.
Specifically, we show that by combining multiple techiques together we can successfully
repair more programs while doing so in fewer search iterations. Repyro also offers key
qualitative features compared to prior work. First, Repyro returns mutated dependency
constraints as opposed to dependency versions, which provides programmers a higher-
level understanding of what the underlying repairs are, and allows them to integrate

75
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with other systems more easily. Second, Repyro (through its use of LLMs) is able to
reason about and report when a program is failing for non-dependency reasons, and
thus a partial repair has been found. Our results suggest that many programs fail due
to non-dependency causes as well, so enabling dependency repair tools to reason about
this and communicate to the user is a crucial step towards making dependency repair
practical.

6.1 the dependency repair problem

To our knowledge, all existing work on automated dependency repair works by a search
process of iteratively applying mutations to dependency solutions, based on heuristics
derived from error messages or other sources [48, 70]. Starting with a dependency
solution (σ1) derived from the buggy constraints (e.g. by using standard Pip), the
program (P) is then executed in the context of dependency solution σ1 and produces
an error:

σ1, P ⇓ Err(E)

where σ1, P ⇓ v indicates the language-specific operational semantics of evaluating a
program in an environment populated with a dependency solution.

Next, some mutation operators are applied to σ1 to derive a new dependency solution
σ2 to test. Commonly the mutation operators are based on the error message E, but
prior work has also suggested mutating based on offline data analysis, such as package
version compatibility statistics mined from build logs of open source projects [48].
Dependending on the exact search algorithm, multiple new dependency solutions may
be derived, and prioritized heuristically. Overall, this approach of mutating dependency
solutions presents a path for representing the problem of dependency repair as a fairly
standard graph search problem, to which creative search heuristics can be applied.

Formally, these repair algorithms are given a program (P) and attempt to find a
dependency solution (σ′) which causes the program P to run successfully:

σ′, P ⇓ ok

However, we argue that this is not the most useful formulation of the problem.
Programmers care not only to find a one-off solution that recovers the functionality
of the program, but also to determine how to fix the buggy dependency constraints
while retaining constraint flexibility. For example, a developer of a package may
have written dependency constraints that are too broad, and their package no longer
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functions correctly when solved with up-to-date dependencies. If the developer obtains
a dependency solution σ′ which causes their package to work, this does not help them
know how to correctly restrict their dependency constraints, short of fully pinning all
dependencies which may be undesirable to clients.

Instead, we consider dependency repair to be providing programmers with repaired
constraints, which when solved with a dependency solver yield a dependency solution
under which the program runs successfully. Suppose that S is a dependency solver. We
say that dependency constraints Σ′ repair the program P for solver S if:

S(Σ′), P ⇓ ok

Once a programmer obtains dependency constraints that repair the program, then
they can simply use those constraints going forward, or compare them to the original
constraints to help understand the root of the problem.

6.2 the repyro architecture

To achieve repair at the level of dependency constraints, we propose performing search
mutations on dependency constraints rather than dependency solutions (versions),
and selecting these mutations based on obtaining concrete dependency solutions and
executing them. This approach has several promising properties. First, if we perform
mutations on constraints themselves, then the suggested aggregate constraint-level
repairs are readily available from the mutation history. Second, mutating constraints
allows us to cutout potentially massive sections of the dependency solution space very
quickly, which may aid in finding repairs more efficiently. Finally, different types of
heuristics (LLMs and PacSolve optimization objectives) can be given separate but
related roles (constraint mutation and constraint solving), leading to a natural method
for integrating LLMs with traditional cost function directed search.

Fig. 6.1 illustrates the main components of Repyro, our tool which performs depen-
dency repair by iteratively mutating dependency constraints. Repyro starts with the
initial (buggy) dependency constraints, Σ. Repyro then iteratively interleaves depen-
dency solving, program execution, and constraint mutation as follows. First, Repyro
invokes the dependency solver (we use PacSolve but any other solver can work) to find
a dependency solution σ1. Then, the program P is executed1 under σ1, and produces
an error. Next, constraint mutation occurs, in which some constraint mutation tactic

1 or tests of P may be executed, if Repyro is configured to do so.
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(assert (installed ’numpy’))

numpy==1.2.6 = σ1 ∈ Σ

Traceback (most recent call last):
File "main.py", line 1, in <module>

...

=
σ1

σ1, P ⇓ Err(E)

Σ

(assert (installed ’numpy’))

(assert ϕ)

numpy==1.1.0 = σ2 ∈ Σ ∩ ϕ

✓

=

σ2, P ⇓ ok

σ2

Constraint
mutation

tactic

Σ ∩ ϕ ¬ϕ

Figure 6.1: Repyro: Dependency repair by interleaved constraint solving and constraint muta-
tion

mutates the constraints Σ. Various forms of constraint mutation are possible, but in this
work we restrict ourselves to mutations which only conjoin new constraints with exist-
ing constraints, thus obtaining constraints that are more restrictive than before (Σ ∩ ϕ).
Now on the next iteration, the dependency solution space is significantly reduced, as
all dependency solutions in ¬ϕ are now eliminated (grayed-out zone). The dependency
solver thus chooses a new solution σ2 within the constrained space. This process is
repeated until a solution is found for which the program executes successfully.

The Repyro framework is quite general. In particular, it subsumes the approach of
performing mutations on dependency solutions rather than constraints, as dependency
solutions can simply be represented as fully pinned dependency constraints, and
then the constraint mutator and solver only operate on fully pinned dependencies.
Of course in this work we instantiate Repyro with components that enable it to truly
perform mutations on flexible constraints. The main building blocks that we need to
instantiate Repyro with are thus: a) the dependency solver, which we use PacSolve for,
b) the optimization objectives for PacSolve, and c) the constraint mutation tactics. By
bulding on PacSolve, we can use optimization objectives which heuristically prioritize
dependency solutions that are more likely to succeed. At each iteration of Repyro,
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we are thus more likely to encounter a working solution and terminate the search.
Additionally, the flexibility of PacSolve enables us to easily configure or disable these
heuristics, which we leverage in our empirical evaluation (Section 6.3).

6.2.1 Modeling Python Dependencies with PacSolve

Repyro is a tool specifically for repairing constraints in the Python ecosystem. To use
PacSolve as the underlying dependency solver for Repyro, we first have to encode Pip
constraints and semantics into PacSolve. For the most part, Pip uses fairly standard
semantic versioning style version numbers and constraints, so the encoding generally
follows that of NPM in Chapter 5. However, there are a couple of key differences that
we need to handle:

1. Python only supports exactly 1 version per package, so the diagonal consistency
function must be used (Section 4.3.2),

2. Pip allows packages to have optional dependencies, which are enabled by named
feature flags, e.g. requests[security], and

3. Python versions themselves should be a solvable variable, as selecting the right
Python version is (anecdotally) important for repair.

To encode optional dependencies gated by feature flags, we encode every feature
flag (F) of a package (P) as an auxillary package (P.F) with versions that correspond
to the versions of the package that have that feature flag. The auxillary package (P.F)
is then given the optional dependencies that are gated behind that feature flag, along
with an exact equality dependency on the correspoding version of the package (P),
which ensures that selected feature flag versions are kept in sync with the main package
versions. Then, any dependency constraint that contains a feature flag, e.g. P[F] >=

1.2.3, is encoded into a dependency on the package (P >= 1.2.3), and an unrestricted
dependency on the auxillary package (P.F).

Enabling Python versions to be solvable by PacSolve was more challenging however,
because Pip allows dependencies to be selectively enabled based on Python versions.
Implementing this required extending PacSolve with support for conditional depen-
dency constraints, that is, dependencies which are selectively enabled based on some
boolean constraint involving possibly other packages (in this case, a distinguished
python package).
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6.2.2 Optimization Objectives for Dependency Repair

When using the PacSolve framework to build a dependency solver, we also need to
configure the optimization objective. Chapter 5 explored several optimization objectives,
including minGoal-oldness which minimized the sum of the ranks of dependency
versions when sorted by release date. In Repyro we do not want to prefer the newest
dependency solutions, as those solutions are typically what is already being produced
by the buggy constraints when solving dependencies with Pip. Instead of minimizing
oldness, we minimize time difference between package versions and some known
date (T0) at which the program in question (presumably) functioned correctly using
dependencies solved by Pip. Such a known date is typically mined from sources such
as Git commit dates, file metadata, or other similar sources. Note that there is no
guarantee that the program did in fact work at this point in time, as it may have been
buggy then as well, but it reflects the best knowledge we have about a point in time in
which the programs may have worked. We define two different optimization objectives
for finding solutions that contain package versions that are near this known date:

DaysT0
(σ) = ∑

d∈deps(σ)
|T0 − date(d)|

RankT0(σ) = ∑
d∈deps(σ)

∣∣{d′ | d′ ∈ versions(d),
∣∣T0 − date(d′)

∣∣ < |T0 − date(d)|
}∣∣

The first optimization objective, DaysT0
(σ), simply minimizes the total date dif-

ference between all dependencies in the solution (d ∈ deps(σ)) and the assumed
working date (T0). The second optimization objective, RankT0(σ), follows the structure
of minGoal-oldness in Chapter 5, minimizing the rank of a dependency d among other
versions of the same package when sorted by time away from the assumed working
date. Note that because Repyro includes the Python version as a solvable variable, the
release date of the selected Python version will be among the terms of these optimiza-
tion objectives. Since both objectives are linear over the dependencies in the solution,
they are easy to express and implement in the PacSolve framework.

6.2.3 Mutation Tactics and Integrating LLMs

The last building block for Repyro is the constraint mutation tactic. Repyro provides
a flexible abstraction allowing arbitrary tactics to be implemented, two core pre-built
tactics (discussed shortly), and tactic combinators such as sequencing (apply two tactics).
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Repyro can then be configured by specifying which tactic (including those derived
through combinators) should be used for constraint mutation.

While Repyro’s tactic framework allows tactics to perform arbitrary mutations to
constraints, based on error messages, current solutions, and current constraints, for this
work we focused on restricted tactic forms, which only consider the program’s error
message (E) and current solution (σi), and produce constraints which are conjoined
with the current constraints (Σi):

Σi+1 = Σi ∧ f (E, σi)

This restricted form allows Repyro to perform an important solving optimization.
Because the next constraints always represent a subset of solutions from the current
constraints (Σi+1 ⊆ Σi), PacSolve does not need to redo its expensive solution graph
sketching algorithm, which includes fetching from PyPI all potentially useful packages
and versions. Instead, the same solution graph can be reused, with additional constraints
on it.

current solution exclusion tactic The first core tactic that Repyro provides
is extremely simple. The excludeCurrent tactic lifts the current solution into a constraint
by conjoining exact equality constraints for each dependency in the solution, and
negates this current solution constraint:

excludeCurrent(σi) = ¬σi

While simple, excludeCurrent is an important component, as it reflects the obvious fact
that we should never retry a solution that already failed, and enables Repyro to be
used in simple configurations for performing repair without the use of LLMs or more
advanced tactics. We leverage this to great extend in our evaluations (Section 6.3).

large-language model tactic The other core tactic, promptLLM, is a tactic
which prompts an off-the-shelf large-language model with the current error message
(E) along with instructions to produce a new PacSolve constraint that would resolve
the error message. Additionally, we prompt the LLM to produce a special GIVEUP
token if the given error can not be fixed through Python-level dependencies. This
includes both non-dependency bugs (e.g. failed to load CSV files, etc.) and system-level
dependency errors (missing libcurl, etc), as they are not representable by Repyro and
we make no attempt to repair them. We use few-shot prompting to show 2 examples of
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error messages and example constraint fixes written in an adapted syntactic form of
the PacSolve DSL, and 1 example of a non-dependency error and the GIVEUP token.
The full prompt template can be found in Appendix A.

Whenever we use the promptLLM tactic in Repyro, we always pair it with the
excludeCurrent tactic via the sequencing combinator, that is, we define:

LLM := Seq(excludeCurrent, promptLLM)

Throughout the evaluation section (Section 6.3) we will always use this variant of
LLM-directed repair.

Other LLM-based techniques could certainly be explored here, including fine-tuning
LLMs on this task, and/or performing searches for similar error messages on Stack
Overflow and using those answers as context in the prompt (retrieval-augmented
generation [58]). In this work we focus our contributions on developing the Repyro
framework (which can easily be reused in future work to try more advanced techniques)
and evaluating how well off-the-shelf LLMs perform with minimal prompt engineering.

6.3 evaluation

As discussed above, the general framework of Repyro constructs a family of concrete
automated dependency repair tools by allowing multiple heuristics and tactics to be
combined in how they guide the search process. In this empirical evaluation we aim to
understand what impact these indiviual configurable components have on the ability
to repair dependencies. Specifically, we answer the following five research questions:

• RQ1: How many Python projects become unrunnable over time due to depen-
dency errors?

• RQ2: Can dependency repairs be found through undirected search?

• RQ3: Do date-based heuristics aid Repyro’s search by finding more successful
solutions and reducing the number of search steps?

• RQ4: Can off-the-shelf LLMs aid Repyro’s search by finding more successful
solutions and reducing the number of search steps?

• RQ5: Are these techniques complementary to each other in aiding repair?

Additionally, we look at various examples of successful and failed fixes relevant to each
technique to qualitatively understand their relative strengths.
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6.3.1 Datasets

Evaluation of Repyro is performed over two distinct types of Python programs: Python
Gists and Python Jupyter notebooks. Table 6.1 describes the relevant statistics for each
dataset we evaluate on. These datasets are described in detail below.

Dataset N Mean #deps Median #deps Min #deps Max #deps

Gistable1 100 1 1 1 1

Gistable2 100 2 2 2 2

Gistable≥3 217 3.4 3 3 8

Julynter 69 3.9 4 1 11

Table 6.1: Sizes of the datasets, and statistics of number of direct dependencies in each dataset

6.3.1.1 Gistable

The dataset of Gists is derived from the Gistable dataset [46]. In [46] the authors mined
a large dataset of Python Gists from GitHub. They then performed a naive form of
dependency inference to infer which PyPI packages to install in order to get Python
Gist to execute successfully, by installing PyPI packages with the same names as import
statements in the Gist source code, without regard for versions of packages. With this
naive approach, the authors were able to get 4,945 Gists to execute successfully.

Each Gist which had dependencies inferred successfully in the Gistable dataset comes
with a Dockerfile which lists the inferred and unpinned dependencies. Because the
authors of [46] did not pin the inferred dependencies, many of these Gists are now
broken due to dependency drift. We thus take the unpinned inferred dependencies as
the constraints which we wish to test as possibly buggy, and if so repair using Repyro.
To make our evaluation more tractable, we also subset the Gistable dataset, while
oversampling the Gists with more dependencies, so that we have sufficient numbers
of the more complex and difficult Gists to repair. We uniformly subsample 100 Gists
that have exactly 1 dependency (Gistable1), again uniformly subsample 100 Gists that
have exactly 2 dependencies (Gistable2), and take all 217 Gists that have 3 or more
dependencies (Gistable≥3). Through this segmentation we ensure that we have sufficient
quantities of Gists across the distribution of number of dependencies, and can observe
how Repyro performs on these datasets of varying challenge.
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Dataset Dep Err Other Err Timeout Success

Gistable1 13% (13) 49% (49) 4% (4) 34% (34)

Gistable2 33% (33) 36% (36) 9% (9) 22% (22)

Gistable≥3 51% (110) 35% (75) 6% (12) 8% (18)

Julynter 26% (16) 64% (39) 2% (1) 8% (5)

Total 36% (172) 42% (199) 5% (26) 17% (79)

Table 6.2: Program execution results when installing dependencies with Pip

6.3.1.2 Julynter

The dataset of Jupyter notebooks is derived from the Julynter dataset [79]. The authors
of [79] randomly selected a representative subsample of 69 of their mined Jupyter
notebooks. We use this as our set of Jupyter notebooks to evaluate on. The notebooks
did not necessarily come with any inferred dependencies, but rather with a clone of
the entire GitHub repository they were mined from, which would sometimes con-
tain requirements.txt or other similar files listing dependencies. For any notebooks
for which there were no listed dependencies, we manually analyzed all the import
statements and added the relevant PyPI package to the list of dependencies. After
this process, we had a list of unpinned dependencies which we take to be the initial,
possibly buggy constraints to repair. We did not segment the Julynter dataset so as to
avoid creating subgroups with too few members.

We also retain the clone of each notebook’s GitHub repository. When Repyro executes
notebooks, we are careful with our execution infrastructure to run the notebook with an
appropriate working directory to allow the notebook to load data files or other Python
modules contained in its repository.

6.3.2 RQ1: How many Python projects become unrunnable over time due to dependency
errors?

First, we aim to estimate the frequency of dependency errors on Python projects within
our datasets, both to understand the impact of dependency drift on the reproducibility
of software and to set baselines for our repair techniques.
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One challenge with this is that both Python 2 and Python 3 are used by programs in
the datasets, and we do not know a priori which version of Python was used by each
program. While this is itself an instance of dependency drift, if we were to simply only
run with one version of Python (e.g. Python 3), we would observe such a large quantity
of failures due only to this issue that we would effectively mask all the other types of
dependency and non-dependency errors.

Instead, we give each program the best shot possibly by running it under both
Python 2.7.18 and Python 3.12.2 using the exact same containerized infrastructure
used by Repyro. The (unpinned) dependencies for each program are installed using
standard Pip. We then examined the result of executing each program under both
Python versions, and manually classified the root cause of each error message as being
caused by a dependency error or not. Errors that were due to the wrong Python version
or missing or wrong versions of packages were counted as a dependency bug root cause.
We then combined the Python 2 and Python 3 results by only counting a program as
having a dependency related error if it had a dependency related error under both
versions of Python. For example, if a program P crashes due to the wrong Python
version when run under Python 2, and crashes due to a missing dependency when run
under Python 3, then P would be categorized as having a dependency root cause. But
if P where to crash due to failing to load a CSV file when run under Python 3, then P
would be categorized as having a non-dependency root cause.

Note that a program which exhibits a non-dependency related crash at runtime may
in fact also contain a dependency related bug(s) which was not reached at runtime, and
thus the numbers of dependency errors found in this analysis should be considered
as a lower bound. Additionally, some of the non-dependency errors are the result of
the specific instructure used in our experimental setup; in particular several gists and
notebooks required access to a writable filesystem, while our infrastructure provided a
read-only filesystem.

Table 6.2 shows the frequency of execution results in each of the datasets, considering
the results of running with both Python 2 and 3, and using Pip to install the (unpinned)
dependencies. Overall, we see that only 17% of all tested programs run successfully
(exited with status code 0). The error types are split fairly evenly between dependency
related errors (36%) and other errors (42%). A small fraction of programs timed out
after 40 minutes. This indicates that while other issues beyond dependency problems
are clearly important for software reproducibility, resolving dependency problems is a
required ingredient for improving reproducibility.
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When comparing the Gists datsets, we see that Gists with more dependencies have
higher rates of dependency errors (Gistable1 = 13%, Gistable2 = 33%, and Gistable≥3 =
51%), and lower rates of non-dependency errors. Jupyter notesbooks appear however
to be distributionally quite different from Gists, as a significantly higher percentage of
them fail due to non-dependency errors. This in line with the findings from [79], which
show that Jupyter notebooks are frequently prone to many notebook-specific repro-
ducibility bugs (out of order cells, missing CSV files, etc.), in addition to reproducibility
issues faced by standalone small scripts (Gists). Note that in our experimental setup we
took great care to ensure that notebooks are run as correctly in their environment as
possible, including copying all data and additional Python files into appropriate direc-
tories so they could be loaded by the notebook. We did not attempt to run notebook
cells out-of-order.

RQ1: 36% of Python programs in our dataset immediately present
with dependency errors upon execution, with the percentage increas-
ing for programs with more dependencies

6.3.3 RQ2: Can dependency repairs be found through undirected search?

The simplest configuration of Repyro performs undirected search of the dependency
solution space. Before evaluating the guided search procedures available in Repyro,
we first examine how well this naive search procedure performs in practice. We run
Repyro configured to perform undirected search, and time it out after 40 minutes. This
search procedure thus produces exactly three possible outcomes: repaired (a solution
under which the program succeeds is found), failure (the entire PacSolve search space
is exhausted), or timeout (after 40 minutes in total). Note that a timeout may be due to
either the Python program itself taking too long to execute, or too many iterations of
search occurring. We additionally track how many iterations of search were performed.

Table 6.3 displays the frequency of the 3 possible outcomes when running unguided
Repyro on the Gists and notebooks which failed due to dependency errors as reported
in Table 6.2. We do not run Repyro on programs that initially had other types of errors
or succeeded because we are attempting to understand how effective Repyro can be
at performing repairs, not at general dependency solving. Additionally, this reduces
the effects of flaky programs on our analysis. The table shows that more dependencies
leads to a lower success rate and higher timeout and failure rates.
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Dataset Repaired Timeout Failure

Gistable1 23% (3) 69% (9) 8% (1)

Gistable2 15% (5) 33% (11) 52% (17)

Gistable≥3 4% (4) 40% (44) 56% (61)

Julynter 0% (0) 94% (15) 6% (1)

Total 7% (12) 46% (79) 47% (80)

Table 6.3: Results when running unguided repair search

Second, the table shows that Repyro fails in a large number of cases (47% overall).
The vast majority are due to dependency constraints being unsatisfiable at the start, that
is, on the very first iteration PacSolve immediately responds with UNSAT. Manually
inspecting these cases reveals that the underlying cause is that packages or versions of
packages which are required have been removed from PyPI. While outside the scope of
this work, a fairly straightforward extension to Repyro could configure PacSolve to
treat dependency constraints as soft constraints, so as to allow Repyro to proceed with
searching for repairs in these cases.

An example of a successful repair with unguided Repyro is Gist 6049407, which
depends on packages which require Python 2. For several iterations Repyro attempts
various Python 3 solutions, all of which fail. On the 9th iteration Repyro happens to
switch to selecting Python 2, which in this case is sufficient to succeed.

Fig. 6.2 shows the cumulative number of successful repairs found per iteration, across
multiple configurations of Repyro. While the other configurations of Repyro will be
discussed in following RQs, at the moment we can read the pink (Unguided) line to
understand how unguided search behaves over time. Unguided search initially finds
7 successful repairs, however must then take many iterations (close to 30) to find all
repairs it is able to (within the 40 minute timeout).

RQ2: Repyro can indeed find some dependency repairs through
entirely undirected search. However, it takes many search iterations
(close to 30) to do so in some cases.
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Figure 6.2: Cumulative number of successful repairs at each iteration count. Each line represents
a configuraiton of Repyro, and a point at (x, y) indicates that the configuration was
able to repair y programs in x or fewer iterations. The x-axis is pseudo-log scaled.
Dotted lines indicate non-partial success metrics for LLM-based models.

6.3.4 RQ3: Do date-based heuristics aid Repyro’s search by finding more successful solutions
and reducing the number of search steps?

Repyro inherits PacSolve’s flexibility for configuring optimization objectives. We
use this to configure Repyro with optimization objectives and optionally additional
constraints that guide the search process. Specifically, every program in our dataset
has an estimated date at which it presumably worked correctly (T0): Gist dates are
determined by the date the Gist was published to GitHub, and Jupyter notebook dates
are determined by the date of the Git commit from which they were mined by the
authors of Julynter.
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Based on this mined date, we evaluate applying either of the two optimization
objectives discussed in Section 6.2.2: DaysT0

(σ) and RankT0(σ). Additionally, we define
optional constraints that restrict the search space based on T0 to only select dependency
versions which existed at or before T0. In total, these options yield four different
repair configurations: RepyroDays, RepyroRank, Repyro≤T0

Days, Repyro≤T0
Rank. Across these

four configurations, we repeat the experiment from Section 6.3.3, and observe how the
date-based heuristics affect the number of repairs and the search dynamics.

Table 6.4 shows the final results of running all four configurations of date-based
heuristics. As with the unguided search, this variant of Repyro produces exactly three
possible outcomes: repaired, timeout, or failure. Additionally, we indicate with (+x
/ −y) the number of paired gained and lost programs in each category compared to
unguided search. Overall, the configurations which order the search space by date
heuristics (RepyroDays, RepyroRank) find more fixes than the unguided search, finding
3 and 5 more net fixes in total each. Moreover, the gains in performance come entirely
from turning cases of timeouts in successful repairs. However, as the date guidance is a
heuristic, there are a few cases where unguided search found a repair while date guided
search did not within the timeout. As expected, there are no effects on the number of
failures for the unconstrained.

An example of successful date heuristic guided repair is Gist 11005158, which imports
the JSONEncoder class from the flask.json module. However, version 2.3.0 of Flask
removed the JSONEncoder class. Based on the date of the Gist, Repyro selects an older
version of Flask (0.10.1) which causes a success on the first try.

The constrained configurations (Repyro≤T0
Days, Repyro≤T0

Rank) find fewer successful fixes
and substantially higher failure rates. This indicates that the date guidance can only be
used as a heuristic and not as a hard constraint, as it is sometimes necessary for repair
to consider package versions that did not yet exist when the program was committed.
One hypotheses for this effect is that programmers may have uploaded Gists which
highlight a bug in a current version of a package.

Returning to Fig. 6.2, the blue line (Date guided) plots the cumulative number of
successful repairs found per iteration for RepyroRank, the best performing date-guided
configuration. Comparing to the unguided configuration, the date guidance helps
Repyro immediately find more fixes in the initial iteration. After that, the date-guided
search then behaves similarly, finding a handful of additional fixes around 10 iterations,
and a few more after a large number of iterations (40 and 128).
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RQ3: Date-based heuristics help Repyro to find more successful re-
pairs in fewer iterations. However, date-guided search (like unguided
search) has a long tail of the number of search iterations. Additionally,
constraining by date cuts out too much of the solution space.
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Config Dataset Repaired Timeout Failure

RepyroDays Gistable1 23% (3, +0 / -0) 69% (9, +0 / -0) 8% (1, +0 / -0)

RepyroDays Gistable2 12% (4, +0 / -1) 36% (12, +1 / -0) 52% (17, +0 / -0)

RepyroDays Gistable≥3 8% (8, +4 / -0) 35% (37, +0 / -4) 57% (60, +0 / -0)

RepyroDays Julynter 0% (0, +0 / -0) 94% (15, +0 / -0) 6% (1, +0 / -0)

RepyroDays Total 9% (15, +4 / -1) 44% (73, +1 / -4) 47% (79, +0 / -0)

RepyroRank Gistable1 23% (3, +0 / -0) 69% (9, +0 / -0) 8% (1, +0 / -0)

RepyroRank Gistable2 15% (5, +1 / -1) 33% (11, +1 / -1) 52% (17, +0 / -0)

RepyroRank Gistable≥3 9% (9, +5 / -0) 32% (33, +0 / -5) 59% (60, +0 / -0)

RepyroRank Julynter 0% (0, +0 / -0) 94% (15, +0 / -0) 6% (1, +0 / -0)

RepyroRank Total 10% (17, +6 / -1) 41% (68, +1 / -6) 48% (79, +0 / -0)

Repyro≤T0
Days Gistable1 15% (2, +0 / -1) 15% (2, +0 / -7) 69% (9, +8 / -0)

Repyro≤T0
Days Gistable2 9% (3, +0 / -2) 12% (4, +1 / -8) 79% (26, +9 / -0)

Repyro≤T0
Days Gistable≥3 5% (5, +3 / -1) 16% (17, +0 / -25) 79% (84, +23 / -0)

Repyro≤T0
Days Julynter 0% (0, +0 / -0) 81% (13, +0 / -2) 19% (3, +2 / -0)

Repyro≤T0
Days Total 6% (10, +3 / -4) 21% (36, +1 / -42) 73% (122, +42 / -0)

Repyro≤T0
Rank Gistable1 15% (2, +0 / -1) 15% (2, +0 / -7) 69% (9, +8 / -0)

Repyro≤T0
Rank Gistable2 9% (3, +0 / -2) 12% (4, +1 / -8) 79% (26, +9 / -0)

Repyro≤T0
Rank Gistable≥3 4% (4, +2 / -1) 17% (18, +0 / -24) 79% (84, +23 / -0)

Repyro≤T0
Rank Julynter 0% (0, +0 / -0) 81% (13, +0 / -2) 19% (3, +2 / -0)

Repyro≤T0
Rank Total 5% (9, +2 / -4) 22% (37, +1 / -41) 73% (122, +42 / -0)

Table 6.4: Results when configuring Repyro with date-based heuristics. Paired additions and
loses in each category are reported relative to unguided search, and are indicated by
(+x / -y).
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6.3.5 RQ4: Can off-the-shelf LLMs aid Repyro’s search by finding more successful solutions
and reducing the number of search steps?

Config Dataset Repaired
Partial
repair

Incorrect
give up

Timeout Failure

Llama 3.1 +
backtrack

Gistable1 23% (3, +0 / -0) 15% (2) 15% (2) 8% (1, +0 / -8) 38% (5, +5 / -1)

Llama 3.1 +
backtrack

Gistable2 15% (5, +0 / -0) 6% (2) 0% (0) 18% (6, +0 / -5) 61% (20, +3 / -0)

Llama 3.1 +
backtrack

Gistable≥3 4% (4, +1 / -1) 0% (0) 0% (0) 32% (35, +1 / -9) 64% (69, +9 / -1)

Llama 3.1 +
backtrack

Julynter 0% (0, +0 / -0) 6% (1) 19% (3) 69% (11, +0 / -4) 6% (1, +0 / -0)

Llama 3.1 +
backtrack

Total 7% (12, +1 / -1) 3% (5) 3% (5) 31% (53, +1 / -26) 56% (95, +17 / -2)

Llama 3 +
backtrack

Gistable1 15% (2, +0 / -1) 0% (0) 8% (1) 38% (5, +1 / -5) 38% (5, +5 / -1)

Llama 3 +
backtrack

Gistable2 16% (5, +0 / -0) 3% (1) 0% (0) 16% (5, +0 / -5) 66% (21, +4 / -0)

Llama 3 +
backtrack

Gistable≥3 4% (4, +2 / -2) 3% (3) 2% (2) 27% (28, +1 / -13) 65% (68, +8 / -1)

Llama 3 +
backtrack

Julynter 0% (0, +0 / -0) 0% (0) 0% (0) 87% (13, +0 / -1) 13% (2, +1 / -0)

Llama 3 +
backtrack

Total 7% (11, +2 / -3) 2% (4) 2% (3) 31% (51, +2 / -24) 58% (96, +18 / -2)

Table 6.5: Results when configuring Repyro with LLM-based repair. Paired additions and loses
in each category are reported relative to unguided search, and are indicated by (+x /
-y).

Next, we evaluate whether off-the-shelf LLMs can help Repyro find more successful
repairs, and how it affects the search dynamics. We evaluate this separately from the
date-based heuristics before combining them together (Section 6.3.6). LLM-directed
repair in Repyro works by prompting the LLM at each search iteration to produce
additional PacSolve constraints which are conjoined with existing constraints.

When configured with LLM-directed repair, Repyro produces 4 possible outcomes: it
may find a repair, timeout, end in failure, or, the LLM may classify the current error
as a non-dependency error and give up. Giving up indicates that the program is (as
judged by the LLM) partially repaired such that dependency bugs are no longer the
cause of the error, and that the programmer should continue with other debugging and
remediation steps. When the LLM gives up, we then manually categorize the error as
a dependency error or not (as in Section 6.3.2) to determine the ground-truth. If the
model is correct, we call this a partial repair, and if not, an incorrect give up.
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First, we observe the frequency of these outcomes when Repyro is configured to use
LLM-directed repair. Specifically, we run Repyro in two configurations: using Llama
3 (70B parameters) and Llama 3.1 (70B parameters). Table 6.5 shows the results of
running these two Repyro configurations across all 4 datasets. As with date-guided
search, we show additions and loses in each category relative to unguided search with
(+x / −y), respectively. Since the give up categories did not exist for unguided search,
they do not have relative gains or losses.

Compared to unguided search, LLM-directed repair encounters fewer timeouts,
and those are shifted into the give up and failure outcomes. The increase in failures
is because the LLM is conjoining additional constraints that do not otherwise exist.
Whereas unguided search would only produce a failure if the entire search space was
exhausted, LLM-directed repair is continually cutting out entire regions of the search
space by adding new constraints. So whether a solution truly is impossible or the
LLM erroneously cutout a useful part of the search space, the search procedure arrives
at a failure outcome faster than with unguided search. While the failure rate with
LLM-synthesized constraints is higher than with unguided search, it is also lower than
with date-based hard constraints (Table 6.4). This suggests that the LLM is able to make
use of the context of the error message to not erroneously remove as much of the search
space, compared to the date-based constraint.

Now comparing the number of correct vs. incorrect give up occurrences, we see
that the precision of the model certainly leaves a lot to be desired. While the sample
sizes are too small to determine a meaningful false positive rate, it does not appear
that if the model classifies an error as a non-dependency error, this fact can be trusted
by the programmer. Clearly there are limits to the knowledge of off-the-shelf models
with regards to understanding highly specific error messages. Likely this could be
improved with more examples in the prompt, offline supervised fine-tuning, RAG-based
techniques [58], or interaction with the programmer.

Moving to the successful repairs, we observe a similar number of full repairs as
unguided search, but when combining the full repairs with partial repairs, we do see
an improvement (+3 net for Llama 3).

An example of a repair synthesized by an LLM is on Gist 5f52ceb565264b1e969a,
which uses the bs4 (Beautiful Soup) package to scrape video information from YouTube.
However, it crashes with an error message of “Malformed attribute selector”. This is
because version 4.7.0 of bs4 made selector syntax more strict (compliant with CSS),
causing some previously allowed selectors to raise an exception [7]. In response to this
error message, the LLM elects to constrain the version of bs4 to be less than version
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4.11, which is not actually a sufficient fix. While the LLM is able to determine which
package is faulty based on the error message, it is not able to determine the correct
version to rollback to. However, in this case the LLM’s constraint does not exclude the
repairing solution from the space, and indeed Repyro then produces a solution with a
sufficiently old version of bs4. This example highlights the capabilities and limitations
of off-the-shelf LLM-directed repair.

When considering the search dynamics in Fig. 6.2 again, we see that the repairs
(both partial and full) occurr much sooner with LLM-guided search. The solid orange
line (LLM guided) shows the cumulative combined full and partial repairs found with
LLM guided search per iteration, while the dashed line shows full repairs only. In
both metrics, the LLM guided search performs multiple repairs quite early (within
4 iterations), and at that point has improved upon unguided search. As unguided
search proceeds, it eventuallly (around 30 iterations) overtakes LLM guided search
when considering full repairs only. In fact, all LLM-based repairs occurr within the first
4 iterations.

When comparing how LLM guidance and date heuristic guidance affects the search
dynamics, we see that the two methods affected the search quite differently. The date-
based heuristics made some problems trivially solvable in 0 steps, but other problems
remained in the long tail which would take many iterations to solve. On the other hand,
LLM-synthesized constraints primarily work to eliminate the long tail of extremely
long search processes. Thus, the LLMs appear quite effective at limiting the size of the
search space. One hypothesis for the LLMs’ middling number of successful repairs in
Table 6.5 is that because date-based heuristics are not used, the LLMs are being asked
to respond to error messages from extraodinarily ancient and likely irrelevant versions
of packages, and in doing so they may produce constraints which effectively reduce
the search space but also cut out useful solutions.

While the LLM by itself does not improve full repairs compared to unguided search,
it does add a crucial capability of allowing the search to return a partial repair, which
is important in practice, and allows some repairs to happen substantially sooner.

RQ4: LLM-synthesized constraints effectively help Repyro to limit the
search space, and find roughly the same number of successful repairs
in fewer iterations. LLMs are not (by themselves) able to substantially
improve the rate of repairs.
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6.3.6 RQ5: Are these techniques complementary to each other in aiding repair?

The results explored in Section 6.3.4 and Section 6.3.5 suggest that date-based heuristics
and LLMs may help the dependency repair search process in different ways: date-based
heuristics help to provide more relevant concrete solutions at any given iteration, while
LLMs provide the ability to effectively reduce the search space and give up so that
(partial) results can be returned to the programmer in a reasonable amount of time.

We now configure Repyro to use both date-based heuristics (RepyroRank) and LLM-
guided repair (Llama 3). At each iteration, Repyro finds the best dependency solution
according to the date-based heuristics, runs it, prompts the LLM with the resulting error
message, and conjoins the LLM’s synthesized PacSolve constraint with the current
constraint set. As in Section 6.3.5, Repyro can conclude with repaired, partially repaired,
timeout, failure or incorrect give up.

Config Dataset Repaired
Partial
repair

Incorrect
give up

Timeout Failure

RepyroRank +
Llama 3

Gistable1 25% (3, +0 / -0) 0% (0) 8% (1) 42% (5, +1 / -4) 25% (3, +3 / -1)

RepyroRank +
Llama 3

Gistable2 16% (5, +1 / -1) 9% (3) 0% (0) 9% (3, +0 / -7) 66% (21, +4 / -0)

RepyroRank +
Llama 3

Gistable≥3 7% (7, +4 / -0) 5% (5) 3% (3) 23% (24, +0 / -15) 62% (64, +3 / -0)

RepyroRank +
Llama 3

Julynter 0% (0, +0 / -0) 0% (0) 0% (0) 73% (8, +0 / -2) 27% (3, +2 / -0)

RepyroRank +
Llama 3

Total 9% (15, +5 / -1) 5% (8) 3% (4) 25% (40, +1 / -28) 58% (91, +12 / -1)

Table 6.6: Results when configuring Repyro with date-based heuristics and LLM-guided repair.
Paired additions and loses in each category are reported relative to unguided search,
and are indicated by (+x / -y).

Table 6.6 shows the outputs of running this configuration of Repyro across all the
datasets. As before, we note the additional and lost programs within each category
compared to unguided search. Overall, we see that the combination of LLM and date-
guided search offers improvements over the baseline of undirected search, with a net 4
additional full repairs and a net 8 additional partial repairs. Ultimately, programmers
care that a tool solves their immediate problem of a dependency error, and to that
end combining LLM and date guidance yields the best success rate of any tested
configuration. Additionally, as with LLM-only search, the timeouts were reduced
substantially.



96 repyro : automated dependency repair through constraint mutation

Compared to LLMs alone, the combination of LLMs and date heuristics yields more
fixes and more partial fixes. One hypothesis is that due to the date-based heuristics, the
LLM is less likely to be prompted with error messages from very old package versions,
and doesn’t go down the “wrong track” of attempting to fix errors that do not need to
be fixed. Compared to date-guidance alone, the combined configuraiton does not find
more full repairs, but does remain competetive. This suggests that there is still work
to be done on preventing the model from synthesizing constraints which eliminate
useful regions of the solution space. When considering partial repairs, the combined
configuration substantially out-performs date-only guidance.

However, the difference in performance is starker when considering the number of
iterations to repair. Returning to Fig. 6.2, the solid green line (LLM + date guided)
shows the cumulative combined full and partial repairs found with the combined
configuration per iteration, while the dashed line shows full repairs only. If considering
only full repairs, the combined configuration finds the same number of repairs in 4
iterations as date-guided does in over 10 iterations. When looking at partial repairs
though, the combined configuration finds substantially more repairs than any other
technique, and does so within only 4 iterations. Overall, combining LLMs with date-
based heuristics improves not only the number of successful (partial) repairs, but does
so in fewer iterations.

An example of a successful repair using both date and LLM guided repair is Gist
4c501fc99acb75852756a4d1dfc8ca3d which uses Beautiful Soup to scrape sources of
free food from Postmates and when found send an SMS alert using the Twilio library.
When using Twilio, it imports the TwilioRestClient class, but version 6 of Twilio
renamed this class to Client. In this case, the LLM correctly and precisely responds
with a fix of constraining Twilio to a version before 6. By then using date-based
optimization, Repyro completes the repair by producing a solution containing the
most up-to-date version of Twilio satisfying that constraint, rather than a likely broken,
archaic version. Indeed, the version of Twilio that Repyro finds that repairs this Gist
(5.7.0) is in fact newer than what most Stack Overflow answers suggested rolling back
to (5.6.x) [49].

RQ5: Combining PacSolve’s global optimization objectives with LLM-
driven repair yields more successful (partial) repairs than with either
technique individually, while doing so in fewer iterations.
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6.4 discussion

The results of our evaluation provide several insights into the effectiveness of Repyro
and its various configurations for automated dependency repair in Python projects.

First, our investigation in RQ1 reveals a significant prevalence of dependency-related
errors in Python projects over time, with 36% of programs in our datasets immediately
presenting dependency errors upon execution. This underscores the importance of
addressing dependency drift and highlights the potential impact of automated repair
tools like Repyro.

The evaluation of undirected search in RQ2 demonstrates that while it can find some
dependency repairs, it often requires many iterations to do so, suggesting that more
sophisticated search strategies could potentially improve the efficiency of the repair
process.

Our exploration of date-based heuristics in RQ3 shows that they can indeed aid
Repyro’s search by finding more successful repairs in fewer iterations. In particular,
date-based heuristics increase the likelihood of finding a repairing solution on the very
first iteration, but has little or no impact after that. This is likely because there are many
very similar solutions nearby to the global optimum, so if the global optimum does not
repair the dependencies, then search after that will continue sampling highly similar
solutions rather than exploring more broadly.

The investigation of LLM-guided repair in RQ4 reveals that off-the-shelf LLMs
can effectively limit the search space and find repairs in fewer iterations. While they
don’t substantially improve the rate of full repairs compared to unguided search, they
introduce the crucial capability of allowing partial repairs and earlier termination of the
search process. We note that this work focused on building the foundational framework
of Repyro to be able to construct dependency repair tools which integrate LLMs with
Max-SMT techniques, and evaluating it with the simplest possible LLM-based approach.
Substantially better results may be obtained through more work on the LLM portion of
the tool, including fine-tuning models or performing error message search queries and
injecting the results into the prompt.

Finally, the combination of date-based heuristics and LLM-guided repair explored
in RQ5 demonstrates the complementary nature of these techniques. We hypothsize
that the date-guidance helps yield solutions and error messages that are more relevant
to the situation at hand, and consequently the LLM can respond to the error message
more effectively. In the other direction, the constraints the LLM synthesizes then forces
PacSolve to find a new global optimum in an area of the search space it had not yet
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explored. This combined approach yields more successful (partial) repairs than either
technique individually, while also reducing the number of iterations required.

6.5 threats to validity

6.5.1 External Validity

Our usage of the Gistable and Julynter datasets may not be representative of Python
programs more broadly. In particular, the Gistable dataset is heavily weighted towards
requiring Python 2, likely at a much higher rate than any new Python code being
written now. Studying dependency drift and dependency repair requires collecting
and using programs which are years out of date, so that you have organic instances of
dependency drift to study. Additionally, any other questions of representativeness of
the original datasets applies here, and we defer to their work for details and discussion
of how the datasets were collected.

In Repyro we only considered repair for Python programs in the PyPI ecosystem.
While we believe the techniques of Repyro could reasonably translate to other languages
and ecosystems (since it is based on PacSolve), we do not know how effective the
techniques would be in other environments, or if other ecosystems have similar rates of
dependency drift to begin with.

6.5.2 Construct Validity

In Sections 6.3.5 and 6.3.6 we examined the performance of LLM-based dependency
repair. Two metrics, full repairs and partial repairs were considered. While we believe
that partial repairs are more indicative of what is useful to the programmer, the selection
of the metric construct affects the interpretation of the data. If selecting full repairs
as the primary metric, then there is not evidence that LLMs helped find more repairs,
only that they helped find repairs in fewer iterations.

6.6 conclusion

Repyro does not claim to fully solve the problem of automated dependency repair.
In contrast, many of the results in Section 6.3 show how much work there is left
to do. However, Repyro offers a promising new avenue for automated dependency
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repair, one in which constraints formalized in a language such as PacSolve, heuristics
based on solution graph optimization (e.g. date-base optimization), and heuristics
for how constraints should be mutated can be composed naturally and seamlessly.
Section 6.3 suggests that all of these components are necessary pieces to achieve
success in automated dependency repair, and indeed we suspect that quite a bit
more juice may be squeezed from this framework, by augmenting any of those three
components. For example, one could perform some approximate static analyses to
determine which library versions are definitely incompatible with the programmer’s
code or dependencies’ code, and then insert these incompability constraints into
PacSolve. Likewise, the problem could be attacked from the LLM direction by exploring,
for example, specialized model training techniques. Repyro offers the framework for
this exploration, and a substantial portion of its flexibility is due to starting with a solid
and flexible foundational formal model in PacSolve.





7
R E L AT E D W O R K

7.1 empirical analyses of dependency management

Our research questions and methodology presented in Chapter 3 build on a large body
of related work examining semantic versioning and technical lag.

7.1.1 Semantic Versioning

While semantic versioning does have a precise syntactic specification [87], the semantics
of what counts as backwards-compatible are not formally defined. Tooling, including
NPM, generally does not enforce how developers make use of semantic versioning in
practice. Choices of semantic versioning usage impact speed of distribution of packages,
technical lag, stability, developer frustration, and more. Developer interviews in 2015
conducted by Bogart et al. [9] in the NPM and CRAN ecosystems found that developers
try to use semantic versioning, but are not always aware of its implications and generally
find dependency management exhausting. More concretely, Raemaekers et al. [90] [90]
found that in 2006–2011, Maven developers often introduced binary incompatible
changes within supposedly non-breaking semver updates. Wittern et al. [106] studied
dependencies between packages in NPM, and found that the number of dependencies
between packages is increasing over time, and observed the frequencies of version
constraint types in 2016. Dietrich et al. [28] then observed how version constraint type
frequencies have changed over time, at the project level. Examining version constraint
evolution at the full-ecosystem level allows for an evaluation based on “wisdom of
the crowds.” Decan et al. [24] perform an analysis of dependency constraints at the
ecosystem level for Cargo, NPM, Packagist and Rubygems. Focusing only on a single
ecosystem (NPM), we validate Decan et al’s findings in Chapter 3, and perform a much
deeper analysis of the dataset. Our study also examines the frequencies of released
update types, which enables us to draw important implications about the diffusion of
security updates.
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7.1.2 Technical Lag

Many pieces of prior work attempt to analyze the propagate of updates to downstream
packages, and how out-of-date the dependencies of a project typically are. Gonzalez-
Barahona et al. [39] define the measure of “technical lag”, which analyzes how far
out-of-date a package’s dependencies are relative to more recently released versions,
which has since been been further studied in the context of NPM [25, 112, 114]. In
addition, the concept of technical lag is specialized to the analysis of the propagation
of security patches or vulnerabilities in further work [15, 26, 113].

Calculating technical lag is difficult, and prior works have attempted to simulate
the dependencies that would have been resolved at different points in time. Some of
these works do not consider transitive dependencies [25, 26], which is concerning as
transitive dependencies typically represent the majority of a package’s dependencies in
NPM. Others have followed up by considering transitive dependencies [113, 114]. Liu et
al. [60] introduce DTResolver, a custom dependency solving algorithm that more closely
matches the behavior of NPM. However, the authors’ evaluation of DTResolver found
that it only matched NPM’s behavior when building dependency trees for 90.58% of
15,673 libraries [60]. Our exploration of NPM’s dependency resolution semantics in
Chapters 4 and 5 showed a variety of corner cases in which NPM’s algorithm will select
unexpected versions for dependencies in order to unify versions. Particularly when
resolving transitive dependencies, the error introduced by an incorrect approximation
of NPM’s resolution semantics compounds. Compared to all prior work that we are
aware of in studying technical lag in the NPM ecosystem, ours is the only study to use
NPM itself to resolve historical dependencies. Our tools and dataset are available to
allow others to employ this methodology [82].

7.2 solver-based package management

The version selection problem was first shown to be NP-complete and encoded as a SAT
and Constraint Programming (CP) problem by Di Cosmo et al. [27, 65] in 2005. This
early work led to the Mancoosi project, which developed the idea of a modular package
manager with customizable solvers [2, 3]. This work centers around the Common
Upgradeability Description Format (CUDF), an input format for front-end package
managers to communicate with back-end solvers.
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CUDF facilitated the development of solver implementations using Mixed-Integer
Linear Programming, Boolean Optimization, and Answer Set Programming [5, 36,
68], and many modern Linux distributions have adopted CUDF-like approaches [1].
OPIUM [101] examined the use of ILP with weights to minimize the number of bytes
downloaded or the total number of packages installed.

While package managers have their roots in Linux distributions, they have evolved
considerably since the early days. Modern language ecosystems have evolved their
own package managers [8, 13, 93, 104], with solver requirements distinct from those
of a traditional Linux distribution. Distribution package managers typically manage
only a single, global installation of each package, while language package managers
are geared more towards programmers and allow multiple installations of the same
software package.

For the most part, language ecosystems have avoided using complete solvers. As
we have found in our implementation, solvers are complex and interfacing with them
effectively is more challenging compared to implementing a greedy algorithm. Even
on the Linux distribution side, so-called functional Linux distributions [20, 29] eschew
solving altogether, opting instead to focus on reproducible configurations maintained
by humans. Most programmers do not know how to use solvers effectively, and fast,
high-quality solver implementations do not exist for new and especially interpreted
languages. Moreover, package managers are now fundamental to software ecosystems,
and most language communities prefer to write and maintain their core tooling in their
own language.

Despite this, developers are starting to realize the need for completeness and well
defined dependency resolution semantics [1]. The Python community, plagued by
inconsistencies in resolutions done by PIP has recently switched to a new resolver with
a proper solver [89]. Dart now uses a custom CDCL SAT solver called PubGrub [104],
and Rust’s Cargo [13] package manager is moving towards this approach [88]. However,
these solvers use ad hoc techniques baked into the implementations to produce desirable
solutions, such as exploring package versions sorted by version number. These are not
guaranteed to be optimal, and it is unclear how to add or modify objectives to these
types of solvers. In contrast, PacSolve makes two new innovations: PacSolve allows for
a declarative specification of multiple prioritized optimization objectives, and PacSolve
changes the problem representation from prior works’ boolean-variable-per-dependency
representation based on SAT solving to PacSolve’s symbolic graph representation
(Section 4.4) based on SMT constraints. Wang et al [102] build smartPip, a system
similar to PacSolve for solving Python dependencies using SMT, and incorporate
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an optimization objective that prioritizes unification with local, already instealled
dependencies. An interesting direction would be to see if smartPip is expressible in
the PacSolve framework, so that the space savings they achieve can be applied easily
to other ecosystems.

Solvers themselves are becoming more accessible through tools like Rosette [100],
which makes features of the Z3 [22] SMT solver accessible within regular Racket [30]
code, and which we leverage to implement PacSolve. Spack [35] makes complex con-
straints available in a Python DSL, and implements their semantics using Answer Set
Programming [33, 37]. Similarly to PacSolve, Spack supports multi-objective optimiza-
tion (backed by ASP), and uses it to find high-quality dependency solutions in HPC
environments [34]. APT is moving towards using Z3 to implement more sophisticated
dependency semantics [51].

The goal of PacSolve is to further separate concerns away from package manager
developers. PacSolve focuses on consistency criteria and formalizes the guarantees that
can be offered by package solvers. NPM [93]’s tree-based solver avoids the use of
an NP-complete solver by allowing multiple, potentially inconsistent versions of the
same package in a tree. Tools like Yarn [108], NPM’s audit tool [73], Dependabot [38],
Snyk [95] and others [55, 86, 96, 97] attempt to answer various needs of developers by
using ad hoc techniques separate from the solving phase, such as deduplication via
hoisting [64] (Yarn), or post hoc updating of dependencies (NPM’s audit tool). However,
these tools run the risk of both correctness bugs and non-optimality in their custom
algorithms. PacSolve provides the best of all these worlds. It combines the flexibility
of multi-version resolution algorithms with the guarantees of complete package solvers
and being able to reason about multiple optimization objectives that each speak to a
need of developers, while guaranteeing a minimal dependency graph.

7.3 automated dependency repair

Generally, there have been two main branches of thought for how to perform depen-
dency repair: search-based techniques which iteratively execute programs to search
for repairing solutions, and techniques which use static analysis to infer required
dependencies (and possibly versions).
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7.3.1 Static Analysis Directed Dependency Repair

DockerizeMe [47] aims to attack the problem of dependency inference. Their goal
is to, given some Python code, produce a Dockerfile that installs the dependencies
necessary for it to execute correctly. They do so by analyzing which modules the
program attempts to import, and pairing that with offline analysis of which Python
packages provide which modules. However, they do not consider dependency versions,
only identifying which dependencies should be installed. The same authors then have
a follow-up paper [48] (discussed below) which attempts to find correct versions by
iterative search.

PyEGo [109] and PyCRE [14], published concurrently in 2022, both attempt to infer
not only dependencies but also versions of dependencies, and in some cases system-
level libraries and Python versions. Both work by performing lightweight static analysis
to determine which modules are imported and which attributes are accessed within
those modules, and then using that data to build constraints to guide dependency
solving.

DValidator [61] does not attack the problem of dependency repair but rather attempts
to build a solver that detects various dependency smells (lints) based on the dependency
graph and the call graph, such as a dependency that is declared but is never actually
called. However, the authors suggest that this technique likely could be repurposed
to analyze whether or not a specific version of a dependency would be incorrect
for the program (similar to PyEGO and PyCRE) and by extension could be used for
dependency repair.

Static analysis algorithms which synthesize constraints to guide dependency solving
need not be in opposition to search-based techniques like Repyro. In fact, they are
orthogonal, and could be combined quite naturally. An initial static analysis tool could
synthesize constraints which are necessary (but not necessarily sufficient) for successful
program execution. These constraints could then be asserted within Repyro, and would
reduce the size of the dependency solution space. If the program still fails to execute
after that, search-based dependency repair could attempt a repair.

An interesting variant in the space of static analysis directed repair is using offline-
trained probablistic models to predict if a given solution is likely to succeed or not.
BuildCheck [66] trains a graph neural network to act as a probabilistic model for the
likelihood that a pair of dependencies causes a build failure. BuildCheck then adds
these probability estimates as optimization criteria to the solver in the Spack package
manager.
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7.3.2 Search-Based Dependency Repair

Repyro is a search-based dependency repair tool which operates by iteratively mutating
dependency constraints based on feedback from solving the current constraints and
executing the program. Prior work using search-based techniques has instead primarily
worked by mutating dependency solutions.

DockerizeMe V2 [48] attempts to infer correct dependency versions for unpinned
dependencies inferred by DockerizeMe [47] (discussed above). V2 works by performing
an iterative deepening depth-first search of the dependenct solution space, guided by
fault localization and upgrade compatibility statistics mined from CI builds. Unfortu-
nately, the CI build guidance may only be useful for the most popular packages, and
this technique does not find constraint patches, only version pinnings which fix the
error.

PyDFix [70] is a tool that comes out of the BugSwam and BugsInPy defect datasets
and attempts to repair dependency drift errors which have been introduced since the
time the defect sample was collected. Unlike our notion of dependency repair, PyDFix
does not necessarily aim to produce a working program; it aims to fix just enough
dependency errors to reproduce the build status (success or a certain error message) at
the time of dataset collection. Like V2, PyDFix works by an iterative patching process,
in which likely responsible dependencies are localized from the error log, and then
patches are generated to pin those dependencies to an old version. PyDFix can perform
backtracking by enqueueing multiple patches for a single error in the queue. The
PyDFix approach only uses information from the error log to guide the selection for
which dependency should be mutated, but not to determine which old version to pin to.
Version choice is dictated by a heuristic of installing the latest version that was available
when the original log was collected. While this heuristic makes sense in the context of
CI builds, in the general setting this may not work as well, since Python developers can
keep dependencies in their local environments for long periods. Additionally, PyDFix
also does not produce new constraints as patches, only pinned versions.

Reliabuild [67] performs version mutation to search the configuration space of
the Spack package manager. Specifically, Reliabuild uses active learning, in which it
interleaves dependency solution selection, evaluation of the solution, and updating
a probabilistic model. As the search progresses, the probabilistic model learns more
about which dependencies likely conflict with which, and higher-quality solutions are
selected. At an abstract level, this is similar to the architecture of Repyro, with the
probabilistic model taking the place of the Repyro constraints. One key difference is
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that Repyro leverages an off-the-shelf LLM’s prior knowledge of how dependencies
and error messages are related rather than constructing that on-the-fly.





8
C O N C L U S I O N

In this dissertation, we explore the landscape of software dependency management,
focusing on package management tools that are critical across modern package ecosys-
tems. Package managers automate much of the labor involved in specify, installing,
and updating dependencies, yet programmers still face significant challenges with
end-to-end dependency management, including how to optimize dependencies and
how to repair broken dependency solutions. This dissertation shows that software
dependency specification and management can be formalized (Chapter 4), and that
such a formalization allows us to build tools offering improved optimization and repair
of dependencies (Chapters 5 and 6). We now review the primary contributions of this
dissertation, and reflect on consequences of design decisions and opportunities for
future work.

empirical analysis of dependency usage Chapter 3 presents an empirical
study of dependency usage in the NPM ecosystem, which is the largest package
repository for JavaScript. We constructed a comprehensive dataset containing every
package and version available on NPM, along with metadata and security advisories.
Using this dataset, we investigated research questions related to how developers specify
dependencies, the extent to which they utilize semantic versioning, and how well
dependency updates propagate through the ecosystem.

One of the most interesting results is a potential misalignment between package
updates and package consumers: on one hand, package consumers make no distinction
between bug and minor updates, as virtually all constraints are either minor-flexible or
fully pinned. On the other hand, package updates are statistically different between
minor and bug updates with regards to which types of files are changed and their
correlation with the introduction of security vulnerabilities. An immediate solution
would be for developers to consider using bug-flexible constraints if they wish to be
more conservative with dependency updates, but this solution would inherently be
non-composable with dependents, as they would be forced to adopt the preference
of their dependency. This insight suggests that package managers should provide
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mechanisms for programmers to express soft dependency solving preferences externally
from hard constraints.

a formal model for dependency solving Chapter 4 presents PacSolve, a
formal, parameterized semantics for dependency solving. Existing package managers
like NPM and PIP have evolved to solve dependencies in various ways, leading to
differing design philosophies and tradeoffs. To better understand this, we developed
a general and executable formal model called PacSolve that allows for a flexible
specification of different dependency solving policies. This formalization provides a
principled framework to reason about dependency management and forms the basis
for the subsequent tools and optimizations discussed in later chapters.

However, PacSolve is not able to model all known dependency solving features
across the wide array of available package managers. Section 4.5 discusses some of
these limitations for PacSolve, and while some limitations could be addressed naturally
in future work, addressing other limitations (such as virtual packages) may necessarily
involve bringing the interface of PacSolve closer to that of an SMT-solver, at which point
it would lose its value as a higher-level framework for reasoning about dependency
solving.

a flexible , optimizing dependency solver Chapter 5 presents MaxNPM, a
complete, drop-in replacement for NPM’s dependency solver which uses PacSolve
as the backend solver. NPM’s default solver often makes greedy choices, resulting in
suboptimal solutions that include outdated or duplicated dependencies. MaxNPM
uses the Max-SMT-based optimization capabilities of PacSolve to allow developers to
customize their optimization preferences, such as minimizing code size or avoiding
security vulnerabilities, thus providing a solution to the problem of non-composable
preferences discussed in Chapter 3. Our evaluation demonstrated that MaxNPM
selects newer dependencies, reduces code size, and avoids security vulnerabilities
more effectively than standard NPM.

While our experiments showed that MaxNPM generally solved dependency only a
bit slower than NPM, this may not scale when running on large numbers (1000s) of
dependencies. Specifically, the implementation of PacSolve requires MaxNPM to call
it with the entire dependency graph eagerly evaluated, which requires MaxNPM to
make potentially a large number of network requests up-front to build the full graph.
An alternate approach could be to re-implement PacSolve to enable lazy evaluation of
the dependency graph so that subgraphs which are known to be either unsatisfiable or
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suboptimal (leveraging optimization functions which are linear over nodes) need not
be fetched over the network.

an automated dependency repair framework Finally, Chapter 6 addresses
the problem of dependency drift, where dependency constraints that once worked may
later cause software failures due to changes in the ecosystem. We propose Repyro, an
automated Python dependency repair framework built on PacSolve. Repyro lever-
ages large language models (LLMs) to suggest constraint fixes and uses PacSolve’s
optimization capabilities to heuristically prioritize solutions which are likely better.
Our ablation study on datasets of Python Gists and Jupyter notebooks showed that by
combining LLM-based techniques with Max-SMT-based optimization we are able to
achieve dependency repairs in fewer iterations compared to those techniques separately.
Additionally, the design of Repyro allows for the generation of modified dependency
constraints instead of specific versions (offering better interpretability and integration
with other tools), and for the identification of failures that are due to non-dependency
issues.





A
P R O M P T T E M P L AT E U S E D I N R E P Y R O

You are an expert at fixing dependency related bugs in Python. Your task is to write a constraint

that fixes the given error while minimally constraining the solution space.

First, I will describe the syntax of constraints. The constrains are written in an embedded DSL

in Python. The DSL is a subset of Python that only includes the following constructs:

- `Python(spec: str)`: This constrains which versions of Python are allowed. The `spec` argument

is a string that can be any valid pip-style version specifier. For example, `Python(spec='>=3.6')`
would allow any version of Python 3.6 or later.

- `Installed(package: str, spec: str)`: This constrains which versions of a package are allowed.

The `package` argument is a string that is the name of the package. The `spec` argument is a string

that can be any valid pip-style version specifier. For example, `Installed('numpy', spec='<1.24')`
would allow any version of numpy strictly older than 1.24.

- `Or(A, B)`: This is a logical OR between two constraints. For example, `Or(Python(spec='<3'),
Installed('numpy', spec='>=1.18'))` would allow any version of Python 2 OR any version of numpy

1.18 or newer.

- `And(A, B)`: This is a logical AND between two constraints. For example, `And(Python(spec='>=3.6'),
Installed('numpy', spec='>=1.18'))` would allow any version of Python 3.6 or newer AND any version of

numpy 1.18 or newer.

You MUST answer in exactly this format:

```
<constraint>

```
where `<constraint>` is a SINGLE valid constraint written in the DSL. If you do not follow this

format, I will not be able to understand your answer. If you write multiple lines, I will not be

able to understand your answer. If you write anything other than a valid constraint, I will not be

able to understand your answer. If you use any operators or syntax not described above, I will not

be able to understand your answer.

Alternatively, if you believe that the error is not fixable by modifying Python dependencies, you

can write:

```
NOT_DEP_ERROR

```

I'm now going to give you a series of example error messages and correct responses.

Example Error 1:
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```
File "/pyenv_runner/context/main.py", line 120

print 'Player data has been successfully converted.'

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

SyntaxError: Missing parentheses in call to 'print'. Did you mean print(...)?

```

Example Constraint 1:

```
Python(spec='<3')

```

Explanation of Example 1:

The error message indicates that the code is using Python 2 syntax for the `print` statement,

so it crashes with Python 3.

The constraint `Python(spec='<3')` would disallow Python 3 and only allow Python 2,

which would fix the error.

Example Error 2:

```
Traceback (most recent call last):

File "/pyenv_runner/context/main.py", line 3, in <module>

print(np.broadcast_shapes((1, 2), (3, 1)))

File "/home/pinckney/dependency-repair/tmp_venv/lib/python3.9/site-packages/numpy/__init__.py",

line 214, in __getattr__

raise AttributeError("module {{!r}} has no attribute "

AttributeError: module 'numpy' has no attribute 'broadcast_shapes'

```

Example Constraint 2:

```
Installed('numpy', spec='>=1.20')

```

Explanation of Example 2:

The error message indicates that the code is using a function `broadcast_shapes`
that was added in numpy 1.20.

Therefore, the code requires numpy 1.20 or newer, so the constraint

`Installed('numpy', spec='>=1.20')` would fix the error.

Example Error 3:

```
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Traceback (most recent call last):

File "main.py", line 160, in <module>

main()

File "main.py", line 156, in main

get_events_list()

File "main.py", line 132, in get_events_list

data = json.loads(get_calendar_list())

File "main.py", line 97, in get_calendar_list

authorization_code = retrieve_authorization_code()

File "main.py", line 52, in retrieve_authorization_code

Popen(["open", url])

File "/pyenv/versions/2.7.18/lib/python2.7/subprocess.py", line 394, in __init__

errread, errwrite)

File "/pyenv/versions/2.7.18/lib/python2.7/subprocess.py", line 1047, in _execute_child

raise child_exception

OSError: [Errno 2] No such file or directory

```

Example Response 3:

```
NOT_DEP_ERROR

```

Explanation of Example 3:

The error message indicates that the "open" command is not available in the environment. This is not

an error that can be resolved through modifying Pip dependencies, so the correct response is

NOT_DEP_ERROR.

The error message which you need to fix is:

```
{{ stderr }}

```
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